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On Isotropic Distributional Solutions to the Boltzmann
Equation for Bose-Einstein Particles
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The paper considers the spatially homogeneous Boltzmann equation for Bose-
Einstein particles (BBE). In order to include the hard sphere model, the equa-
tion is studied in a weak form and its solutions (including initial data) are
set in the class of isotropic positive Borel measures and therefore called iso-
tropic distributional solutions. Stability of distributional solutions is established
in the weak topology, global existence of distributional solutions that conserve
the mass and energy is proved by weak convergence of approximate L1-solu-
tions, and moment production estimates for the distributional solutions are
also obtained. As an application of the weak form of the BBE equation, it is
shown that a Bose-Einstein distribution plus a Dirac δ-function is an equilib-
rium solution to the BBE equation in the weak form if and only if it satisfies a
low temperature condition and an exact ratio of the Bose-Einstein condensation.

KEY WORDS: Boltzmann equation; Bose-Einstein particles; hard sphere
model; distributional solution; equilibrium; Bose-Einstein condensation.

1. INTRODUCTION

The Boltzmann equation for Bose-Einstein particles under consider-
ation is given by

∂

∂t
f (v, t)=

∫∫
R3×S2

B(v−v∗,ω)
[
f ′f ′

∗(1+ εf )(1+ εf∗)

−ff∗(1+ εf ′)(1+ εf ′
∗)
]
dω dv∗ (BBE)
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which describes time-evolution of dilute, space-homogeneous, and one spe-
cies Bose gases. Physical background and derivation of the BBE equa-
tion can be found in Chapman and Cowling(9) Chap.17 and Uehling and
Uhlenbeck(28). In Eq. (BBE), the solution f is the velocity distribution
(or the number density) of particles, ε is a positive quantum parameter:
ε= (h/m)3/g where h is the Planck’s constant, m is the particle mass and
g is the spin degeneracy. Note that since the common term ff∗f ′f ′∗ in the
collision integral can be cancelled automatically, the Eq. (BBE) is equiva-
lent to

∂

∂t
f (v, t)=QB(f )(v, t), v∈R3, t ∈ [0,∞), (1.1)

QB(f )(v, t)

=
∫∫

R3×S2
B(v−v∗,ω)

[
f ′f ′

∗(1+ εf + εf∗)−ff∗(1+ εf ′ + εf ′
∗)
]
dω dv∗.

(1.2)

In this paper, Eq. (BBE) is understood as its equivalent form Eqs.
(1.1)–(1.2). Here f∗, f ′, f ′∗ stand for the same density f at different veloc-
ities: f = f (v, t), f∗ = f (v∗, t), f ′ = f (v′, t), f ′∗ = f (v′∗, t), where v, v∗ and
v′, v′∗ are velocities of two particles before and after their collision respec-
tively. The particle collision is assumed to conserve the momentum and the
kinetic energy:

v′ +v′
∗ =v+v∗, |v′|2 +|v′

∗|2 =|v|2 +|v∗|2

which can be written as an explicit relation:

v′ =v−〈v−v∗,ω〉ω, v′
∗ =v∗ +〈v−v∗,ω〉ω, ω∈S2. (1.3)

The function B(v−v∗,ω) – often called the collision kernel – depends
on the molecular interactions and is a nonnegative Borel function of
|v−v∗| and |〈v−v∗,ω〉| only:

B(v−v∗,ω)≡B(|v−v∗|, cos θ), θ =arccos (|〈v−v∗,ω〉|/|v−v∗|) .
(1.4)

(For v=v∗ we define θ =0.) In this paper, we do not distinguish between
B(v− v∗,ω) and B(|v− v∗|, cos θ). For the hard sphere model, B is given
by

B(|v−v∗|, cos θ)=|v−v∗| cos θ (1.5)
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which is the only original physical model that our main results of the pres-
ent paper can include. For the models of inverse-power law potentials, B
takes the form

B(|v−v∗|, cos θ)=b(cos θ)|v−v∗|γ , γ <1 (1.6)

where γ is the constant whose value determines different models: hard
potentials (γ > 0), the Maxwellian model (γ = 0) and soft potentials (γ <
0). Here the angular function b(cos θ) is continuous on θ ∈ [0, π/2) and
has a non-integrable singularity at θ =π/2:

b(cos θ)∼ const.(π/2− θ)−(3−γ )/2, θ→π/2 (1.7)

which is an effect of huge amount of grazing collisions of particles
(Cercignani(6), Villani(30)). It is different from the classical Boltzmann
equation (i.e., ε=0) that this angular singularity can not be absorbed even
in an isotropic weak form of Eq. (BBE) (see Proposition 2 below).

In kinetic theory, the BBE model attracts research interests in its
amazing quantum effect. At very low temperatures the quantum effect
becomes important and yields the Bose-Einstein Condensation (BEC). The
f ormation of BEC can be described by the BBE model and its modifi-
cations (Semikov and Tkachev(24,25)). On the other hand, it is this quan-
tum effect that makes the rigorous study of the BBE model to be the
most difficult in almost all main aspects in comparison with those of
the already difficult classical Boltzmann model (see Cercignani, Illner and
Pulvirenti(7), Villani(30) for relevant results and reviews) and the Fermi-Di-
rac model (which is given by replacing ε with −ε, and this implies that
solutions are bounded from above by 1/ε provided that their initial data
have this bound; basic results have been obtained in for instance Dolbea-
ult(10), Lions(18), Lu(21), Lu and Wennberg(22), but the study on long-time
behavior are far from complete). So far there have been no results on
the global existence of solutions (with general initial data) to Eq. (BBE)
for any collision kernel without cutoff. Partial results are referred to for
instance Lu(20) for global existence and long-time behavior of isotropic
L1-solutions of Eq. (BBE) with a strong cutoff condition on the kernel
(see Eq. (1.8) or (2.1) below), to Escobedo, Mischler and Valle(13) for
(among their many main results) the global existence and uniqueness of
measure-valued solutions of Eq. (BBE) with a similar cutoff condition on
the kernel, using rigorously Dirac δ-functions. For similar quantum kinetic
models we refer to Escobedo and Mischler(11) for the global existence
and uniqueness of solutions to the Boltzmann-Compton equation (which
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describes evolution of a photon gas), long-time behavior on the Bose con-
densates, and a rigorous justification of an approximation to the Boltz-
mann-Compton equation by the Kompaneets equation, and to Escobed(12)

for further results on the two equations. It is also profit to see Villani(30)

Chap. 5 for comments and questions about the BBE-like models.
In this paper, we are mainly concerned with the global existence of

isotropic solutions of Eq. (BBE) where the collision kernel includes at least
a known physical model, for instance, the hard sphere model. All main
difficulties in the study of the BBE model concentrate on the stronger non-
linear term ff ′f ′∗ in the collision integral. It is this nonlinear term that
yields BEC, but which constrains the possibilities for investigation: Among
all the known physical collision models, we could only deal with (at least
in the present level) the hard sphere model and even in this case the Eq.
(BBE) has to be taken certain weak form (whose solutions are then called
weak or distributional solutions) as treated for the classical Boltzmann
equation (see e.g., Arkeryd(1), Goudon(15), Villani(29)). Weak solutions are
usually obtained by convergence of approximate solutions which are solu-
tions of approximate equations where the original kernel has been made
cutoffs so as to overcome the divergence. For instance if B is made a cut-
off such that

B(|v−v∗|, cos θ) � K|v−v∗|3 cos2 θ sin θ (1.8)

with any given constant 0<K<∞, then for all isotropic functions
f, g, h∈L1(R3),∫∫∫

R3×R3×S2
B(v−v∗,ω)|f (v)g(v′)h(v′

∗)|dωdvdv∗ �2K‖f ‖L1‖g‖L1‖h‖L1

(1.9)

(see ref. 20). Without cutoff as (1.8), the collision integral will be divergent
for some isotropic functions. In fact, if there is constant 0 � p<∞ such
that

B(|v−v∗|, cos θ) � (|v−v∗| cos θ)p1{|v−v∗| cos θ � 1},

then for any isotropic function f in L1(R3) satisfying f (v)� |v|−5/21{|v|� 1},
we have (using Carleman representation (see Section 2)) that∫∫∫

R3×R3×S2
B(v−v∗,ω)f (v)f (v′)f (v′

∗)dωdvdv∗ =∞.
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It should be noted that the cutoff condition as Eq. (1.8) is not enough to
insure the convergence of the collision integral; the isotropic condition can
not be removed from the bound like (1.9). In fact we have the following

Proposition 1. Let B(V, τ) be a nonnegative Borel function on
R+ × [0,1] satisfying that B(V, τ) is continuous in the open set (0,∞)×
(0,1) and B(V0, τ0)>0 for some (V0, τ0)∈ (0,∞)× (0,1). Let B(v−v∗,ω)
be defined by B(V, τ) through (1.4). Then there exist non-isotropic and
nonnegative functions fn ∈ C∞

c (R
3) satisfying supn � 1 ‖fn‖L1 < ∞ such

that for every function 	 ∈Cb(R9) satisfying 	(0, x, y) �= 0 for all x, y ∈
R3 \ {0} with x⊥y, we have, as n→∞,

∫∫∫
R3×R3×S2

B(v−v∗,ω)|	(v, v′, v′
∗)|fn(v)fn(v′)fn(v′

∗)dωdv∗dv→∞.

(1.10)

The proof of this proposition will be given in Section 2. Note that if
we choose 	(v, v′, v′∗)=ψ(v)+ψ(v′ + v′∗ − v)−ψ(v′)−ψ(v′∗) with ( for
instance) ψ(v)= e−c|v|2 (c > 0), then 	 satisfies the condition in Proposi-
tion 1. This means that for non-isotropic initial data it will be very diffi-
cult to prove the existence of global solutions of Eq. (BBE) even in a weak
form and with a cutoff (1.8). However there has been no counterexample
showing that the global existence of solutions with general (non-isotropic)
initial data is impossible. In fact Proposition 1 does not exclude the fol-
lowing possibility: The total integral

∫ t

0
dτ

∫∫∫
R3×R3×S2

B(v−v∗,ω)f (v, τ )f (v′, τ )f (v′
∗, τ )dωdv∗dv

could be convergent even though the dωdv∗dv-integral is unbounded on
τ ∈ [0, t ]. This possibility together with the exponential form of Eq. (BBE)
(a Duhamel-type formula where all terms are positive) may be helpful to
save the game. But the analysis is of course rather complicated.

In this paper we only consider isotropic solutions of Eq. (BBE) in a
weak form where the physical model included is the hard sphere model.
Moreover as considered in ref. 13, in order to cover the Bose-Einstein con-
densation (i.e. the velocity concentration), we need to set the initial data
and therefore the corresponding solutions in the largest class: the positive
Borel measures. This setting is of course reasonable in physics and has
been studied in the classical model where the probability idea and certain
contraction properties of probability distributions are used to deal with
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the Maxwellian molecules (i.e., γ = 0) and the results show that the reg-
ularity of solutions is not worse than their initial data in the sense that
if an initial datum is in L1(R3) then so is the corresponding solution for
all time, and for every initial datum (whatever it is in L1 or just a singu-
lar measure) the solution always converges to a Maxwellian distribution
as time goes to infinity unless the initial datum and therefore the solu-
tion are the same Dirac measure (see e.g., Gabetta, Toscani and Wenn-
berg,(14) Toscani and Villani,(26) Carlen, Carvalho and Gabetta,(4) Carlen
and Lu(5)). But for the quantum model, this measure setting seems to be
the only choice at least in the present level because it is far from clear
whether a solution of Eq. (BBE) with an initial datum in L1(R3) can be
still in L1(R3) for a finite or infinite time interval. This problem is of
course closely related to the physical question that for the BBE model and
for L1-initial data whether the BEC can happen within a finite time.

In general, isotropic solutions are functions of (|v − v0|, t) where
v0 is the mean velocity. Since after a velocity translation the function
f (v+v0, t) is still a solution with initial datum f0(v+v0), we may assume
that v0 = 0, so the isotropic solution under consideration takes the form
f =f (v, t)=f (r, t) with r=|v|.

As mentioned above, in our main results, a weak solution to Eq. (BBE)
will be a family of positive Borel measures {Ft }t � 0 on R+ := [0,∞), which
is a weak limit of approximate L1-isotropic solutions {f n(r, t)} obtained in
ref. 20. Therefore the weak convergence should be taken in the correspon-
ding weak topology. This needs the collision kernel having no singularity.

In this paper we assume that the kernel B satisfies the following con-
ditions (i)–(ii):

(i) B(·, ·)∈C(R+ × [0,1]) ,
∫ 1

0
B(V, τ)dτ >0 ∀V >0.

(ii) supV � 0, τ∈[0,1]
B(V,τ)

1+V <∞, supV � 0
B(V,τ)

1+V →0 as τ→0+ .

The limit in the condition (ii) implies that B(V,0)=0 which is neces-
sary for the continuity of some induced kernel in the collision integral of
ff ′f ′∗ (see Proposition 2 in Section 2). It is obvious that the conditions
(i)–(ii) include the hard sphere model (1.5): B(V, τ)=V τ. For hard poten-
tials and the Maxwellian model (1.6) (0 � γ <1), the conditions (i)–(ii) are
simply equivalent to the cutoff conditions that the angular function b(τ)

is continuous on (0,1] with
∫ 1

0 b(τ)dτ >0 and b(0) :=b(0+)=0. Of course
the condition b(0+)= 0 is very restrictive in contrast to the severe singu-
larity (1.7). We do not know whether the condition b(0+)=0 (or generally
B(V,0+)= 0) is essential, but in our framework it is almost compulsory
for proving the weak convergence of approximate solutions.
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Our main results of this paper can be summarized as follows (the pre-
cise statements will be given in the following sections):

• Weak Stability: Let B satisfy (i)–(ii), Bn be given by the cutoff
(2.1) (∀n � 1) or Bn=B (∀n � 1). Let Fn0 � 0 be a sequence of initial data
with bounded mass and energy, and let Fnt � 0 be conservative isotropic
distributional solutions to Eq. (BBE) in the weak form (2.12) with kernels
Bn and Fnt |t=0 =Fn0 . If Fn0 converges to F0 weakly in the measure space,
then there exist a subsequence F

nj
t and a solution Ft of Eq. (BBE) in the

weak form, such that Ft |t=0 =F0 and F
nj
t converges weakly to Ft (j→∞)

for all t � 0. Moreover if
∫

R+ r
2 dFn0 (r)→

∫
R3 r

2 dF0(r) (n→ ∞), then Ft
also conserves the energy.

• Existence and Moment Estimates: Under the conditions (i)–(ii) and
for any isotropic initial datum F0 � 0 having finite mass and energy, the
Eq. (BBE) in the weak form (2.12) has an isotropic distributional solu-
tion Ft � 0 satisfying Ft |t=0 =F0, and Ft conserves the mass and energy.
Moreover for hard potentials (0<γ � 1) satisfying the conditions (i)–(ii),
the solution Ft can be chosen such that the moment production estimate
(5.4) holds for all high order moments.

• Equilibrium States and BEC: The Bose-Einstein distributions and
Dirac δ-functions are all equilibrium solutions to Eq. (BBE) in the weak
form (2.12). While the sum of a Bose-Einstein distribution and a Dirac
δ-function is an equilibrium solution to Eq. (BBE) in the weak form if and
only if it satisfies a low temperature condition T � Tc and an exact ratio
Bose-Einstein condensation: N0/N=1− (T /Tc)3/2 (which is essentially the
same to the traditional result for ideal Bose gases).

The rest of the paper is organized as follows: In Section 2, we first derive
a weak form of Eq. (BBE) for approximate solutions for cutoff kernels Bn and
then naturally introduce the Definition of weak (or distributional) solutions
for the kernel B satisfying the conditions (i)–(ii). We also show in that section
the necessity of B(V,0)= 0 and prove the divergence (1.10). In Section 3, we
prove some lemmas about continuity and convergence properties which will
be used in dealing with weak convergence of (approximate) solutions. Then
in Section 4 we prove the weak stability and existence of distributional solu-
tions. In Section 5 we prove the property of non-decrease of energy for all solu-
tions. This implies that the solution obtained in Section 4 conserves the energy.
And as an application of the weak stability we also establish in Section 5 the
moment production estimates which will be used for the further study of Eq.
(BBE). Finally, Section 6 is a simple but important application of the weak
form of Eq. (BBE) where we prove the above mentioned results on equilib-
rium states and BEC.
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2. FROM L1-SOLUTIONS TO DISTRIBUTIONAL SOLUTIONS

Introduce weighted L1-function spaces

L1
s (R

3)=
{
f ∈L1(R3)

∣∣∣∣‖f ‖L1
s

:=
∫

R3
(1+|v|s)|f (v)|dv<∞

}
, s � 0.

For each n � 1, consider the following cutoff:

Bn(|v−v∗|, cos θ)=min{B(|v−v∗|, cos θ), n|v−v∗|3 cos2 θ sin θ}. (2.1)

Given isotropic initial data 0 � f n0 ∈L1
2(R

3) , f n0 (v)=f n0 (|v|). By The-
orem 3 in ref. 20, the Eq. (BBE) with the kernels Bn has isotropic solu-
tions f n(v, t)=f n(|v|, t) in C1([0,∞);L1(R3)) with f n|t=0 =f n0 :

f n(v, t)=f n0 (v)+
∫ t

0
QBn(f

n)(v, s)ds, v∈R3 \Zn, t � 0 (2.2)

where Zn are null sets independent of t . The solutions also conserve the
mass and energy:∫

R3
f n(v, t)(1, |v|2)dv=

∫
R3
f n0 (v)(1, |v|2)dv.

Using the approximate solutions f n we now begin our derivation of a
weak form of Eq. (BBE). Without loss of generality, the test functions
ϕ(r) will be taken as ϕ(r2) when they appear in integration. We assume
that ϕ∈C2

b (R+) so that there are no problem of integrability. Here Ckb(R+)
denotes the class of functions ϕ ∈ Ck(R+) satisfying that ϕ(r) and their
derivatives dj

drj
ϕ(r) up to order k are all bounded on R+. Let

dFnt (r)=4πr2f n(r, t)dr.

Multiplying ϕ(|v|2) to both sides of Eq. (2.2) and taking integration we
compute with the usual derivation (using Fubini theorem) that∫

R+
ϕ(r2)dFnt (r) =

∫
R+
ϕ(r2)dFn0 (r)

+
∫ t

0
ds

∫∫
R2+
JBn [ϕ](r, r∗)dFns (r)dF

n
s (r∗)
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+ ε
∫ t

0
ds

∫∫∫
R3×R3×S2

Bn(v−v∗,ω)�ϕf nf n′
f n

′
∗dωdvdv∗

where

JB [ϕ](r, r∗) = 1
(4π)2

∫∫∫
S2×S2×S2

B(rσ−r∗σ∗,ω)[ϕ(|v′|2)−ϕ(r2)]dω dσdσ∗,

v′ =v−〈v−v∗,ω〉ω, v= rσ, v∗ = r∗σ∗,
�ϕ=ϕ(|v|2)+ϕ(|v∗|2)−ϕ(|v′|2)−ϕ(|v′

∗|2).

The main step of our derivation is to compute the collision integral of
f nf n′f n′

∗ with respect to dωdvdv∗. We show that this integral can be
written as an integration with respect to the product measure

dFns (r)dF
n
s (r

′)dFns (r
′
∗)

where r, r ′, r ′∗ are independent variables in R+. For fixed n and s, write
f n(v, s)= f (|v|). Let x = v − v′, y = v − v′∗. Then (1.3) implies that x⊥y
and |x − y| = |v− v∗| =

√
|x|2 +|y|2. Using Carleman’s representation (ref.

3) we have∫∫∫
R3×R3×S2

Bn(v−v∗,ω)�ϕff ′f ′
∗dωdvdv∗

=2
∫

R3
f (|v|)

[∫
R3

f (|v−x|)
|x|2

∫
R2(x)

Bn(V, cos θ)�ϕ f (|v−y|)d⊥ydx
]
dv

where V =
√

|x|2 +|y|2 , cos θ =|x|/
√

|x|2 +|y|2, θ ∈ [0, π/2],

�ϕ=ϕ(|v|2)+ϕ(|v−x|2 +|v−y|2 −|v|2)−ϕ(|v−x|2)−ϕ(|v−y|2),

R2(x) = {y ∈ R3 |y⊥x} for x �= 0, and d⊥y denotes the 2-dimensional
Lebesgue measure on the plan R2(x). For v, x, y∈R3 with x �=0, y �=0 and
x⊥y, consider the decomposition for Bn=Bn(V, cos θ):

Bn= |x||v−y|
|x||v−y|+ |y||v−x|Bn+ |y||v−x|

|x||v−y|+ |y||v−x|Bn.

Then following the proof of Proposition 2 in ref. 20 and noting that �ϕ
is symmetric with respect to x and y, we obtain∫∫∫

R3×R3×S2
Bn(v−v∗,ω)�ϕff ′f ′

∗dωdvdv∗
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=2
∫

R3
f (|v|)

{∫
R3
f (|v−x|)

∫
R2(x)

�ϕ

|x||v−y|+ |y||v−x|
×
[
Bn(V, cos θ)

|x| + Bn(V, sin θ)
|y|

]
f (|v−y|)|v−y|d⊥ydx

}
dv.

(2.3)

Let

�(|v|, |v−x|, |x|, |v−y|, |y|)
= �ϕ

|x||v−y|+ |y||v−x|
[
Bn(V, cos θ)

|x| + Bn(V, sin θ)
|y|

]

and change variable x= v− z. Then the inner integral in (2.3) on d⊥ydx
is equal to

∫
R3
f (|z|)

∫
R2(ξ)

�(|v|, |z|, |v− z|, |v−y|, |y|)f (|v−y|)|v−y|d⊥y dz

where ξ = (v − z)/|v − z| and we have used the fact that R2(ξ)= R2(λξ)

for all λ ∈ R \ {0}. To compute the inner integral on d⊥y we denote
vξ =〈v, ξ〉ξ . Since (v−vξ )⊥ξ , i.e., v−vξ ∈R2(ξ), the coordinate transform
y=ρω+v−vξ in R2(ξ) gives

∫
R2(ξ)

�(|v|, |z|, |v− z|, |v−y|, |y|)f (|v−y|)|v−y|d⊥y

=
∫ ∞

0

(∫
S1(ξ)

�(|v|, |z|, |v− z|,
√

|vξ |2 +ρ2, |ρω+v−vξ |)d⊥ω
)

×f (
√

|vξ |2 +ρ2 )

√
|vξ |2 +ρ2 ρ dρ

=
∫ ∞

|vξ |

(∫
S1(ξ)

�(|v|, |z|, |v− z|, r ′∗, |
√
r ′∗

2 −|vξ |2 ω+v−vξ |)d⊥ω
)

× r ′∗2
f (r ′∗)dr

′
∗.

Here S1(ξ)={ω∈S2 |ω⊥ξ} and d⊥ω stands for the Lebesgue measure on
the circle S1(ξ), i.e.,

∫
S1(ξ)

g(ω)d⊥ω=
∫ 2π

0
g(cosφ i + sinφ j)dφ
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where i, j are unit vectors such that {i, j, ξ} forms an orthonormal base of
R3. By calculation using the formula above for � on its last variable and
noting that ω⊥vξ when ω∈S1(ξ), we obtain (for r ′∗> |vξ |)∫

S1(ξ)

�(· · · , |
√
r ′∗

2 −|vξ |2 ω+v−vξ |)d⊥ω=
∫ 2π

0
�(· · · , Y )dφ

where Y � 0,

Y 2 = r ′∗2 −|vξ |2 +|v|2 −〈v, ξ〉2 +2
√
r ′∗

2 −|vξ |2
√

|v|2 −|〈v, ξ〉|2 cosφ.

Combining these with spherical coordinate transforms v= rσ, z= r ′σ ′ we
obtain∫∫∫

R3×R3×S2
Bn(v−v∗,ω)�ϕff ′f ′

∗dωdvdv∗

=2
∫∫∫

R3+

{∫∫
S2×S2

dσdσ ′
∫ 2π

0

�ϕ(r, r ′, r ′∗)
Xr ′∗ +Yr ′

[
Bn(V, cos θ)

X
+ Bn(V, sin θ)

Y

]
×1{r ′∗>r|〈σ,ξ〉|}dφ

}
r2f (r)r ′2f (r ′)r ′∗

2
f (r ′∗)drdr

′dr ′∗ (2.4)

where

�ϕ(r, r ′, r ′∗)=ϕ(r̂2)+ϕ(r ′2 + r ′∗2 − r̂2)−ϕ(r ′2)−ϕ(r ′∗2
),

r̂=min{r ,
√
r ′2 + r ′∗2 }, V =

√
X2 +Y 2,

θ =arccos(X/
√
X2 +Y 2); θ =0 if X=Y =0 ,

X=|rσ − r ′σ ′|, σ, σ ′ ∈S2,

Y =
[
(r ′∗

2 − r2〈σ, ξ〉2)+ + r2(1−〈σ, ξ〉2)

+2
√
(r ′∗

2 − r2〈σ, ξ〉2)+ r

√
1−〈σ, ξ〉2 cosφ

]1/2

,

ξ = rσ − r ′σ ′

|rσ − r ′σ ′| if rσ �= r ′σ ′; ξ =σ if rσ = r ′σ ′,

(a − b)+ = a − b if a � b; = 0 if a < b, and 1{··· } denotes the indicator:

1{a>b} = 1 if a > b; = 0 if a � b. The restriction r̂ = min{r ,
√
r ′2 + r ′∗2}

comes from the following relation:

r ′∗>r|〈σ, ξ〉| �⇒ r ′2 + r ′∗2
>r2 (2.5)
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which is a consequence of the identity

r ′2 + r ′∗2 − r2 = (|rσ − r ′σ ′|− r〈σ, ξ〉)2 + r ′∗2 − r2〈σ, ξ〉2.

The following lemma gives a representation of �ϕ(r, r ′, r ′∗) which is
important for establishing a weak form of Eq. (BBE).

Lemma 1. Let ϕ ∈C2(R+) and let �ϕ(r, r ′, r ′∗) be defined in above.
Then for all (r, r ′, r ′∗)∈R3+

�ϕ(r, r ′, r ′∗)=L[D2ϕ](r, r ′, r ′∗)(r
′2 − r̂2)(r ′∗

2 − r̂2)

where D2ϕ(r)= d2

dr2 ϕ(r), r̂=min{r ,
√
r ′2 + r ′∗2 },

L[D2ϕ](r, r ′, r ′∗)= (1−λ)[D2ϕ](r ′, r ′∗)+λ [D2ϕ](r, r ′, r ′∗),

λ= 2(r ′2 − r̂2)(r ′∗
2 − r̂2)

(r ′2 − r̂2)2 + (r ′∗2 − r̂2)2
and λ=0 for r ′ = r ′∗ = r̂ , (2.6)

[D2ϕ](r ′, r ′∗)=
∫ 1

0
(D2ϕ)(r ′∗

2 + s(r ′2 − r ′∗2
))ds,

[D2ϕ](r, r ′, r ′∗)

= 1
2

∫ 1

0
(1− s)

[
(D2ϕ)(r ′2 + s(r̂2 − r ′2))+ (D2ϕ)(r ′∗

2 + s(r̂2 − r ′∗2
))

+(D2ϕ)(r ′2 + s(r ′∗2 − r̂2))+ (D2ϕ)(r ′∗
2 + s(r ′2 − r̂2))

]
ds.

The function L[D2ϕ](r, r ′, r ′∗) is continuous on R3+ and has the bound

|L[D2ϕ](r, r ′, r ′∗)| � 3 max
0 � ρ � r ′2+r ′∗2

|D2ϕ(ρ)|, (r, r ′, r ′∗)∈R3
+. (2.7)

The proof of this lemma will be given in the next section. Let us first
introduce a linear functional KB [ϕ] of ϕ and a new kernel WB (for any
B ∈C(R+ × [0,1])):

KB [ϕ](r, r ′, r ′∗)=L[D2ϕ](r, r ′, r ′∗)WB(r, r
′, r ′∗), ϕ ∈C2(R+) (2.8)
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WB(r, r
′, r ′∗)=

2
(4π)3

∫∫
S2×S2

dσdσ ′
∫ 2π

0
WB(r, r

′, r ′∗, σ, σ
′, φ)dφ (2.9)

where (with notations collected under Eq. (2.4))

WB(r, r
′, r ′∗, σ, σ

′, φ)

= (r ′2 − r2)(r ′∗
2 − r2)

Xr ′∗ +Yr ′
[
B(V, cos θ)

X
+ B(V, sin θ)

Y

]
1{r ′∗>r|〈σ,ξ〉|}

for (r ′ − r)(r ′∗ − r) �=0, and

WB(r, r
′, r ′∗, σ, σ

′, φ)=0 for (r ′ − r)(r ′∗ − r)=0.

It is easily proven that if (r ′ − r)(r ′∗ − r) �=0 and r ′∗>r|〈σ, ξ〉|, then

X � |r ′ − r|>0, Y � |r ′∗ − r|>0

so the function WB(r, r
′, r ′∗, σ, σ ′, φ) is well defined. Also from the relation

(2.5) we have

(r ′2 − r2)(r ′∗
2 − r2)1{r ′∗>r|〈σ,ξ〉|} = (r ′

2 − r̂2)(r ′∗
2 − r̂2)1{r ′∗>r|〈σ,ξ〉|}.

This gives (at least for (r ′ − r)(r ′∗ − r) �= 0) a detailed representation of
KB [ϕ]:

KB [ϕ](r, r ′, r ′∗)

= 2
(4π)3

∫∫
S2×S2

dσdσ ′
∫ 2π

0

�ϕ(r, r ′, r ′∗)
Xr ′∗ +Yr ′

[
B(V, cos θ)

X
+ B(V, sin θ)

Y

]
×1{r ′∗>r|〈σ,ξ〉|}dφ. (2.10)

In particular for the hard sphere model B(V, τ)=V τ we have

KB [ϕ](r, r ′, r ′∗)=
4

(4π)3

∫∫
S2×S2

dσdσ ′
∫ 2π

0

�ϕ(r, r ′, r ′∗)
Xr ′∗ +Yr ′ 1{r ′∗>r|〈σ,ξ〉|}dφ.

It is also useful to write JB [ϕ](r, r∗) in a detailed version:

JB [ϕ](r, r∗)= 2
(4π)2

∫∫
S2×S2

dσdσ∗
∫ π/2

0
B(|rσ − r∗σ∗|, cos θ) sin θ



1610 Lu

×
∫ 2π

0
[ϕ(|v′|2)−ϕ(r2)]dφ dθ (2.11)

where

|v′|2 = r2 sin2 θ + r2
∗ cos2 θ −2rr∗ sin θ cos θ

√
1−〈σ,σ∗〉2 cosφ.

Now if we replace the density 4πr2f (r)dr with a positive Borel mea-
sure dF(r) on R+ satisfying

∫
R+(1 + r2)dF (r)<∞, then from Eqs. (2.4),

(2.10), and (2.11) we see that the collision integral operator (1.2) for the
BBE model in a weak form can be defined as a linear functional ϕ �→
〈QB(F),ϕ〉 on ϕ ∈C2

b (R+) by

〈QB(F),ϕ〉 :=
∫∫

R2+
JB [ϕ](r, r∗)dF (r)dF (r∗)

+ ε
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗)dF (r)dF (r

′)dF (r ′∗).

Later we will prove that (see Lemma 1, Lemma 2, Eqs. (3.13)
and (3.15) in Section 3) the functions JB [ϕ](r, r∗) and KB [ϕ](r, r ′, r ′∗)
are continuous on (r, r∗) ∈ R2+ and on (r, r ′, r ′∗) ∈ R3+ respectively for all
ϕ ∈C2

b (R+), and satisfy∫∫
R2+

|JB [ϕ](r, r∗)|dF(r)dF (r∗) � C‖ϕ‖L∞(‖F‖2)
2,∫∫∫

R3+
|KB [ϕ](r, r ′, r ′∗)|dF(r)dF (r ′)dF (r ′∗) � C‖D2ϕ‖L∞(‖F‖2)

3

where ‖F‖2 = ∫R+(1+ r2)dF (r), C=C0 supV � 0,τ∈[0,1]
B(V,τ)

1+V , and C0 is an
absolute constant. Therefore the linear functional ϕ �→ 〈QB(F),ϕ〉 is well
defined and bounded on C2

b (R+).
From the above derivation we now obtain the following weak form

for the approximate solutions f n of Eq. (BBE) (with the kernel Bn): For
all ϕ ∈C2

b (R+),∫
R+
ϕ(r2)dFnt (r)=

∫
R+
ϕ(r2)dFn0 (r)+

∫ t

0
〈QBn(F

n
s ), ϕ〉ds, t � 0

(n=1,2,3, . . . ). Therefore taking weak limit leads to the following
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Definition of Isotropic Distributional Solutions: Let B a collision ker-
nel satisfying the conditions (i)− (ii). Let F0 be a positive Borel measure
on R+ with

∫
R+(1 + r2)dF0(r)<∞. If a family {Ft }t � 0 of positive Borel

measures on R+ satisfies

(1) Ft |t=0 =F0,
(2) supt∈[0,T ]

∫
R+(1+ r2)dFt (r)<∞ ∀0<T <∞,

(3) the function t �→ ∫
R+ ϕ(r

2)dFt (r) is in C1([0,∞)) for all ϕ ∈
C2
b (R+), and

(4) the equation

d

dt

∫
R+
ϕ(r2)dFt (r)=〈QB(Ft ), ϕ〉 (2.12)

holds for all ϕ ∈C2
b (R+) and all t � 0, then Ft is called an isotropic dis-

tributional solution to Eq. (BBE) with the initial datum F0. Furthermore,
if Ft conserves the mass and energy, i.e., if for all t � 0∫

R+
dFt (r)=

∫
R+
dF0(r),

∫
R+
r2dFt (r)=

∫
R+
r2dF0(r),

then we say that Ft is a conservative solution.
Note that since the constant function ϕ ≡ 1 gives JB [1] =KB [1] = 0,

the conservation of mass holds for all solutions. But the conservation of
energy does not hold automatically. In general, we can only prove that the
energy t �→ ∫

R+ r
2dFt (r) is non-decreasing (see Section 4). We note also

that in our Definition, the test functions ϕ are independent of t . But this
does not lose generality: It is easily shown that if Ft is an isotropic distri-
butional solution, then

d

dt

∫
R+
ϕ(r2, t)dFt (r)=

∫
R+

∂

∂t
ϕ(r2, t)dFt (r)+〈QB(Ft ), ϕ(·, t)〉 (2.13)

for all ϕ ∈C2
b (R

2+) and all t � 0. Here Ckb(R
2+) denotes the class of func-

tions ϕ ∈ Ck(R2+) satisfying that ϕ(r, t) and ∂i+j
∂ri ∂tj

ϕ(r, t) with order i +
j � k are all bounded on R2+. In fact, for any ϕ ∈ C2

b (R
2+) and any

t0 ∈ [0,∞), applying Definition to the test function r �→ϕ(r, t0) we have for
all t � 0 with t �= t0

1
t−t0

(∫
R+ ϕ(r

2, t)dFt (r)−
∫

R+ ϕ(r
2, t0)dFt0(r)

)
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= ∫R+
1
t−t0

(∫ t
t0

∂
∂s
ϕ(r2, s)ds

)
dFt (r)+ 1

t−t0
∫ t
t0
〈QB(Fs), ϕ(·, t0)〉ds

→ ∫
R+

∂
∂t
ϕ(r2, t0)dFt0(r)+〈QB(Ft0), ϕ(·, t0)〉 as t→ t0.

This gives the general weak form (2.13). A remark on the validity of this
derivation is given at the end of Section 4.

In the above formulations there are also many other crucial details
such as integrability and continuity (in pointwise and weak topology) that
should be proven in the rigorous sense. These are the main content of the
next section.

Now we shall prove the necessity of the condition B(V,0)=0 for ker-
nels B as mentioned in the Introduction.

Proposition 2. Let B(V, τ) be continuous on R+ × [0,1] such that
KB [ϕ](r, r ′, r ′∗) is continuous on R3+ for all ϕ ∈C2

b (R+). Then B(V,0)≡0.

Proof. Given any V >0. Choose for instance rn=0, r ′n=V , r ′∗n=εn>
0 ( n=1,2, ...) and εn→0 ( n→∞). Then by continuity of KB [ϕ] and the
definition of WB we have

lim
n→∞KB [ϕ](0, V , εn)=KB [ϕ](0, V ,0)=0.

On the other hand we compute Xn = V,Yn = εn,Vn =
√
V 2 + ε2

n, and

sin θn=Yn/Vn→0 so by the continuity of L[D2ϕ] and B we have

KB [ϕ](0, V , εn) = L[D2ϕ](0, V , εn)WB(0, V , εn)

= 1
2
L[D2ϕ](0, V , εn) [εnB(Vn, cos θn)+VB(Vn, sin θn)]

→ 1
2
L[D2ϕ](0, V ,0)V B(V,0) (n→∞).

Thus

L[D2ϕ](0, V ,0)B(V,0)=0 ∀V >0, ∀ϕ ∈C2
b (R+).

Since

L[D2ϕ](0, V ,0)=
∫ 1

0
(D2ϕ)(sV 2)ds= 1

V 2

(
dϕ

dr
(V 2)− dϕ

dr
(0)
)

which can be non-zero for some ϕ ∈C2
b (R+) (e.g., ϕ(r)= e−r ), it follows

that B(V,0)≡0.
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Finally let us prove the divergence (1.10) in Proposition 1. First of
all we note that the boundedness of the function 	 in (1.10) implies the
strong divergence

lim
n→∞

∫∫∫
R3×R3×S2

B(v−v∗,ω)fn(v)fn(v′)fn(v′
∗)dωdv∗dv=∞. (2.14)

An observation that leads to the divergence (2.14) is the following
formulation using Dirac δ-functions: Let δ0(v)= δ0(|v|) � 0 be a Dirac δ-
function concentrated at v=0 with

∫
R3 δ0(v)dv=1. Let 0<V0<∞,0<τ0<

1 be given in Proposition 1. Choose x0, y0 ∈ R3 \ {0} satisfying x0⊥y0 and

|x0|=V0τ0, |y0|=V0

√
1− τ 2

0 so that |x0 −y0|=V0, |x0|/|x0 −y0|= τ0. Con-
sider f (v)= δ0(v)+ δ0(v−x0)+ δ0(v−y0). By nonnegativity and Carleman
representation (this time we use (v′, v′∗)= (v+ x, v+ y)) we have formally
that

Q :=
∫∫∫

R3×R3×S2
B(v−v∗,ω)f (v)f (v′)f (v′

∗)dωdv∗dv

�
∫∫∫

R3×R3×S2
B(v−v∗,ω)δ0(v)δ0(v

′ −x0)δ0(v
′
∗ −y0)dωdv∗dv

= 2
∫

R3
δ0(v)

∫
R3

δ0(v+x−x0)

|x|2

×
(∫

R(x)
δ0(v+y−y0)B(|x−y|, |x|/|x−y|)d⊥y

)
dx

= 2
∫

R3

δ0(x−x0)

|x|2
(∫

R(x)
δ0(y−y0)B(|x−y|, |x|/|x−y|)d⊥y

)
dx

= 2
|x0|2

B(|x0 −y0|, |x0|/|x0 −y0|)
∫

R2(x0)

δ0(y−y0)d
⊥y .

Since y0 ∈R2(x0), the translation invariance on R2(x0) gives

∫
R2(x0)

δ0(y−y0)d
⊥y=

∫
R2
δ0(y)dy= 1

2

∫
R3

δ0(y)

|y| dy=∞.

Since B(|x0−y0|, |x0|/|x0−y0|)=B(V0, τ0)>0, it follows that Q=∞.

Proof of Proposition 1. The proof of (1.10) follows the same idea
as above but details are technically different because it should be careful
to deal with the multiplication of (approximate) δ-functions. Let �(r)=
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exp(− 1
1−r2 ) if 0 � r < 1; �(r)= 0 if r � 1. Let V0, τ0, x0 and y0 be given

in the above argument. For any n � 1, consider

f (1)n (v)=n9�(n3|v|), f (2)n (v)=n6�(n2|v−x0|), f (3)n (v)=n3�(n|v−y0|),

fn(v)=f (1)n (v)+f (2)n (v)+f (3)n (v).

Then 0 � fn ∈C∞
c (R

3) and∫
R3
fn(v)dx=3

∫
R3
�(|v|)dv, n=1,2, . . . .

Let 	(v, v′, v′∗) be a function satisfying the condition in Proposition 1.
Since fn(v)fn(v

′)fn(v′∗) � f
(1)
n (v)f

(2)
n (v′)f (3)n (v′∗), using Carleman repre-

sentation we have

Qn :=
∫∫∫

R3×R3×S2
B(v−v∗,ω)|	(v, v′, v′

∗)|fn(v)fn(v′)fn(v′
∗)dωdv∗dv

�
∫∫∫

R3×R3×S2
B(v−v∗,ω)|	(v, v′, v′

∗)|f (1)n (v)f (2)n (v′)f (3)n (v′
∗)dωdv∗dv

= 2
∫

R3
f (1)n (v)

∫
R3

f
(2)
n (v+x)

|x|2
∫

R2(x)

f (3)n (v+y)

×B(|x−y|, |x|/|x−y|)|	(v, v+x, v+y)|d⊥y dxdv

= 2n18
∫

R3
�(n3|v|)

∫
R3

�(n2|v+x−x0|)
|x|2

∫
R2(x)

�(n|v+y−y0|)

×B(|x−y|, |x|/|x−y|)|	(v, v+x, v+y)|d⊥y dxdv

= 2n9
∫

|v| � 1
�(|v|)

∫
R3

�(n2|v/n3 +x−x0|)
|x|2

∫
R2(x)

�(n|v/n3+y−y0|)

×B(|x−y|, |x|/|x−y|)|	(v/n3, v/n3 +x, v/n3 +y)|d⊥y dxdv.

By the assumption on 	, |	(0, x0, y0)|>0. So there exists η0>0 such that

A∗
0 :=min{|	(v, v′, v′

∗)| | |v| � η0, |v′ −x0| � η0, |v′
∗ −y0| � η0}>0.

Let 0<η<min{V0, τ0, 1− τ0} be small enough such that

B∗
0 := inf{B(V, τ) | |V −V0| � η, |τ − τ0| � η}>0.
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Let n > n0 := max{2/|x0|, 6/V0, 3/η, 8/(ηV0) ,1/η0}. Since �(r) is sup-
ported on [0,1], it follows that for all (v, x, y) satisfying |v| � 1 and
�(n2|v/n3 +x−x0|)�(n|v/n3 +y−y0|) �=0 we have |v/n3 +x−x0| � 1/n2,
|v/n3 + y− y0| � 1/n, |x− x0| � 1/n, |y− y0| � 2/n, |x| � 2|x0|, ||x− y|−
V0| = ||x − y| − |x0 − y0|| � 3/n � η and ||x|/|x − y| − τ0| = ||x|/|x − y| −
|x0|/|x0 −y0|| � 8/(V0n) � η, and so

|	(v/n3, v/n3 +x, v/n3 +y)| � A∗
0 , B(|x−y|, |x|/|x−y|) � B∗

0 .

Also, since �(r) is non-increasing, it follows that for all |v| � 1,

�(n2|v/n3 +x−x0|) � �(1/n+n2|x−x0|),
�(n|v/n3 +y−y0|) � �(1/n2 +n|y−y0|).

Thus for the constant C∗
0 =‖�‖L1A∗

0B
∗
0/(2|x0|)2>0, we obtain

Qn � C∗
0n

9
∫

R3
�(1/n+n2|x−x0|)

∫
R2(x)

�(1/n2 +n|y−y0|)d⊥y dx

= C∗
0n

3
∫

|x| � 1
�(1/n+|x|)

∫
R2(x/n2+x0)

�(1/n2 +n|y−y0|)d⊥ydx.

Let

zn(x)=y0 − 〈y0, x/n
2〉

|x0|2 +〈x0, x/n
2〉x0, |x| � 1.

Then the condition 〈x0, y0〉=0 implies that

〈zn(x), x/n2 +x0〉=0, i.e., zn(x)∈R2(x/n2 +x0).

Furthermore for all n>n0 and all |x| � 1 we have |y−y0| � |y− zn(x)|+
|zn(x)− y0| � |y − zn(x)| + c/n2 and so �(1/n2 + n|y − y0|) � �(1/n2 +
c/n+ n|y − zn(x)|) where c depends only x0 and y0. Let εn = max{1/n,
1/n2 + c/n}. Then using translation invariance on R2(x/n2 +x0) and not-
ing that C∗

0 >0 and εn→0 we obtain

Qn � C∗
0n

3
∫

|x| � 1
�(εn+|x|)

∫
R2(x/n2+x0)

�(εn+n|y− zn(x)|)d⊥ydx

=C∗
0n

3
∫

R3
�(εn+|x|)dx ·

∫
R2
�(εn+n|y|)dy

=C∗
0 ·n ·

∫
R3
�(εn+|x|)dx ·

∫
R2
�(εn+|y|)dy→∞ (n→∞).
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3. SOME LEMMAS

Throughout this section, unless otherwise stated, we always assume
that the kernel B satisfies the conditions (i)-(ii). We first prove Lemma 1
stated in the above section.

Proof of Lemma 1. First of all, the estimate (2.7) is obvious by
definition of L[D2ϕ]. Now we prove the representation (2.8). Let ϕ ∈
C2(R+) and let r, r ′, r ′∗ � 0. We may assume that (r ′2 − r̂2)2 + (r ′∗

2 −
r̂2)2>0 (otherwise (2.8) holds obviously). By definition of L[D2ϕ] we have
L[D2ϕ](r, r ′, r ′∗)≡L[D2ϕ](r̂, r ′, r ′∗). Since r ′2 + r ′∗2 � r̂2 we may assume for
notational convenience that r ′2 + r ′∗2 � r2. By Taylor formula we have

ϕ(r2)−ϕ(r ′2)=ϕ1(r
′2) (r2 − r ′2)+ϕ2(r, r

′) (r2 − r ′2)2, (3.1)

ϕ(r2)−ϕ(r ′∗2
)=ϕ1(r

′
∗

2
) (r2 − r ′∗2

)+ϕ2(r, r
′
∗) (r

2 − r ′∗2
)2, (3.2)

ϕ(r ′2 + r ′∗2 − r2)−ϕ(r ′2)=ϕ1(r
′2) (r ′∗

2 − r2)+ϕ3(r, r
′, r ′∗) (r

′
∗

2 − r2)2,

(3.3)

ϕ(r ′2 + r ′∗2 − r2)−ϕ(r ′∗2
)=ϕ1(r

′
∗

2
) (r ′2 − r2)+ϕ3(r, r

′
∗, r

′) (r ′2 − r2)2

(3.4)

where ϕ1(r)=Dϕ(r)= d
dr
ϕ(r),

ϕ2(r, r
′)=

∫ 1

0
(1− s)(D2ϕ)(r ′2 + s(r2 − r ′2))ds,

ϕ3(r, r
′, r ′∗)=

∫ 1

0
(1− s)(D2ϕ)(r ′2 + s(r ′∗2 − r2))ds.

Let

α1 := (r2 − r ′∗2
)2

(r2 − r ′2)2 + (r2 − r ′∗2)2
, α2 := (r2 − r ′2)2

(r2 − r ′2)2 + (r2 − r ′∗2)2
.

Multiplying α1 to equations (3.1), (3.4) and α2 to (3.2), (3.3) respectively,
and denoting

ϕ4(r
′, r ′∗)=

∫ 1

0
(D2ϕ)(r ′∗

2 + s(r ′2 − r ′∗2
))ds
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we compute

�ϕ(r, r ′, r∗′)
=α1[ϕ1(r

′2)−ϕ1(r
′
∗

2
)](r2 − r ′2)+α2[ϕ1(r

′
∗

2
)−ϕ1(r

′2)](r2 − r ′∗2
)

+α1 ϕ2(r, r
′) (r2 − r ′2)2 +α2 ϕ2(r, r

′
∗) (r

2 − r ′∗2
)2

+α2 ϕ3(r, r
′, r ′∗) (r

′
∗

2 − r2)2 +α1 ϕ3(r, r
′
∗, r

′) (r ′2 − r2)2

=α1 ϕ4(r
′, r ′∗) (r

′2 − r ′∗2
)(r2 − r ′2)−α2 ϕ4(r

′, r ′∗) (r
′2 − r ′∗2

)(r2 − r ′∗2
)

+α1 ϕ2(r, r
′) (r2 − r ′2)2 +α2 ϕ2(r, r

′
∗) (r

2 − r ′∗2
)2

+α2 ϕ3(r, r
′, r ′∗) (r

′
∗

2 − r2)2 +α1 ϕ3(r, r
′
∗, r

′) (r ′2 − r2)2

= (r ′2 − r2)(r ′∗
2 − r2)

{
(1−λ)ϕ4(r

′, r ′∗)

+λ · 1
2

[
ϕ2(r, r

′)+ϕ2(r, r
′
∗)+ϕ3(r, r

′, r ′∗)+ϕ3(r, r
′
∗, r

′)
]}

= (r ′2 − r2)(r ′∗
2 − r2)L[D2ϕ](r, r ′, r ′∗)

where λ is given by (2.6). This proves (2.8).
Next we prove the continuity of L[D2ϕ](r, r ′, r ′∗) on R3+. Because the

restriction r̂=min{r,
√
r ′2 + r ′∗2} is continuous, we need only to prove that

L[D2ϕ](r, r ′, r ′∗), being as a function defined on the set S := {(r, r ′, r ′∗) ∈
R3+ | r ′2 + r ′∗2 � r2}, is continuous on S. It is obvious that this function is
continuous at points (r, r ′, r ′∗)∈S satisfying (r ′2 − r2)2 + (r ′∗2 − r2)2>0. So
we need only to prove the continuity at r = r ′ = r ′∗. Let (ρ, ρ′, ρ′∗)∈ S. If
(ρ2 −ρ′2)2 +(ρ2 −ρ′∗

2
)2>0, then by definition of λ in (2.6) we have |λ| � 1

which gives

∣∣∣L[D2ϕ](ρ, ρ′, ρ′
∗)−L[D2ϕ](r, r, r)

∣∣∣= ∣∣∣L[D2ϕ](ρ, ρ′, ρ′
∗)−ϕ4(r, r)

∣∣∣
�
∣∣ϕ4(ρ

′, ρ′
∗)−ϕ4(r, r)

∣∣
+1

2

∣∣∣∣ϕ2(ρ, ρ
′)+ϕ2(ρ, ρ

′
∗)+ϕ3(ρ, ρ

′, ρ′
∗)+ϕ3(ρ, ρ

′
∗, ρ

′)−2ϕ4(ρ
′, ρ′

∗)
∣∣∣∣.

This inequality holds also for ρ=ρ′ =ρ′∗. Since the right hand-side of this
inequality tends to zero as (ρ, ρ′, ρ′∗)→ (r, r, r), it follows that the function
L[D2ϕ](r, r ′, r ′∗) is continuous at (r, r, r). Thus L[D2ϕ](r, r ′, r ′∗) is continu-
ous on S and therefore on R3+.
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Lemma 2. Let WB(r, r
′, r ′∗) be given in (2.9). Then WB is continu-

ous on R3+ and satisfies

|WB(r, r
′, r ′∗)| � C(r ′ + r ′∗)(1+ r ′ + r ′∗), (r, r ′, r∗)∈R3

+, (3.5)

|WB(r, r
′, r ′∗)|

(1+ r2)(1+ r ′2)(1+ r ′∗2)
→0 as r2 + r ′2 + r ′∗2 →∞ (3.6)

where C=C0 supV � 0, τ∈[0,1]
B(V,τ)

1+V , C0 is an absolute constant.

Remark 1. The solo estimate (3.5) holds in fact for any B(V, τ) that
satisfies the first condition in (ii); the collision operator QB(F) as a linear
functional can be still defined and bounded on C2

b (R+). While the con-
tinuity of WB is mainly used to applying the Dini’s monotone uniform
convergence on compact domains for continuous functions (see the proof
of Lemma 3). This uniform convergence together with the decay (3.6)
enable us to prove the weak convergence (in measure spaces) of approx-
imate solutions of Eq. (BBE).

Proof of Lemma 2. We first prove the estimate (3.5). Recall defini-
tion of WB . It suffices to prove that

|WB(r, r
′, r ′∗, σ, σ

′, φ)| � 27(r ′ + r ′∗) [B(V, cos θ) sin θ +B(V, sin θ) cos θ ]
(3.7)

for all (r, r ′, r ′∗)∈ R3+ and all (σ, σ ′, φ)∈ S2 ×S2 × [0,2π ]. We can assume
that WB(r, r

′, r ′∗, σ, σ ′, φ) �=0. This implies that r ′∗>r|〈σ ′, ξ〉|, X � |r ′ − r|>
0, Y � |r ′∗ − r|> 0 and r ′2 + r ′∗2

>r2. Since X=V cos θ , Y =V sin θ , these
imply

|WB(r, r
′, r ′∗, σ, σ

′, φ)| � (r ′ + r)(r ′∗ + r)
Xr ′∗ +Yr ′ [YB(V, cos θ)+XB(V, sin θ)]

= (r ′ + r)(r ′∗ + r)
(cos θ)r ′∗ + (sin θ)r ′

[B(V, cos θ) sin θ +B(V, sin θ) cos θ ] .

(1) If r ′>r/2 and r ′∗>r/2, then

(r ′ + r)(r ′∗ + r)
(cos θ)r ′∗ + (sin θ)r ′

� 9r ′r ′∗
min{r ′, r ′∗}

� 9(r ′ + r ′∗).
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(2) If r ′ � r/2 and r ′∗ > r/2, then X � |r ′ − r| = r − r ′ � r/2 and so
r ′ + r � 3

2 r � 3X. Also r ′∗ + r � 3r ′∗. This implies that

(r ′ + r)(r ′∗ + r)
(cos θ)r ′∗ + (sin θ)r ′

� 3X ·3r ′∗
(cos θ)r ′∗

=9V � 27(r ′ + r ′∗).

Here we have used obvious inequalities V � X + Y and X � r +
r ′, Y � r+ r ′∗.

(3) Similarly if r ′>r/2 and r ′∗ � r/2, then

(r ′ + r)(r ′∗ + r)
(cos θ)r ′∗ + (sin θ)r ′

� 3Y ·3r ′

(sin θ)r ′
=9V � 27(r ′ + r ′∗).

This proves (3.7) and thus (3.5) holds. Next we prove the limit (3.6). Let

A(δ)= sup
V � 0,0 � τ � δ

B(V, τ)

1+V , 0<δ<1.

By assumption on B we have A(δ)→0 as δ→0+. We now prove the fol-
lowing estimate which implies (3.6): For any R>4

|WB(r, r
′, r ′∗, σ, σ

′, φ)|

� C

(
A

(
1√
R

)
+ 1√

R

)
(1+ r2)(1+ r ′2)(1+ r ′∗2

) (3.8)

for all (σ, σ ′, φ)∈ S2 ×S2 × [0,2π ] and all r2 + r ′2 + r ′∗2
> 16R2. Here and

below the constants C are as given in the lemma. As above, we need
only to consider the case WB(r, r

′, r ′∗, σ, σ ′, φ) �=0. Suppose R>4 and r2 +
r ′2 + r ′∗2

>16R2. In what follows we assume without loss of generality that
r ′∗ � r ′.

(1) Suppose that r >
√
R or r ′ � 2

√
R. Then by the estimate (3.7)

|WB(r, r
′, r ′∗, σ, σ

′, φ)| � C(r ′ + r ′∗)(1+ r ′ + r ′∗)

� C(1+ r2)(1+ r ′2)(1+ r ′∗2
)

(1+ r2)(1+ r ′2) � C

R
(1+ r2)(1+ r ′2)(1+ r ′∗2

).



1620 Lu

(2) Suppose that r �
√
R and r ′ < 2

√
R. Then r ′∗ �

√
16R2 −5R >

3R+√
R. This implies that Y � r ′∗ − r > 3R and X � r + r ′ � 3

√
R. Thus

cos θ � X/Y � 1/
√
R and therefore by (3.7) we get

|WB(r, r
′, r ′∗, σ, σ

′, φ)| � 54r∗(1+V )
(
A

(
1√
R

)
+C 1√

R

)
� C(1+ r ′∗2

)

(
A

(
1√
R

)
+ 1√

R

)
.

This proves the estimate (3.8).

Now we are going to prove the continuity of WB(r, r
′, r ′∗). Given

any (r, r ′, r ′∗)∈ R3+. Let {(rn, r ′n, r ′∗n)}∞n=1 be any sequence in R3+ satisfying
(rn, r

′
n, r

′∗n)→ (r, r ′, r ′∗)(n→∞). From the estimate (3.7) one sees that the
sequence {WB(rn, r

′
n, r

′∗n, σ, σ
′, φ)}∞

n=1 is uniformly bounded on S2 ×S2 ×
[0,2π ]. So by Lebesgue dominated convergence we need only to prove the
pointwise convergence: For almost every (σ, σ ′, φ)∈S2 ×S2 × [0,2π ]

WB(rn, r
′
n, r

′
∗n, σ, σ

′, φ)→WB(r, r
′, r ′∗, σ, σ

′, φ) (n→∞). (3.9)

The proof is carried out in different cases:

(1) r ′ = r ′∗ =0; (2) r= r ′ =0, r ′∗>0;
(3) r= r ′∗ =0, r ′>0; (4) r ′ =0, r � r ′∗>0;
(5) r ′∗ =0, r >0, r ′>0; (6) r ′ =0, r ′∗>r >0;
(7) r=0, r ′>0, r ′∗>0; (8) r >0, r ′>0, r ′∗>0.

Let Xn,Yn, cos θn, sin θn and ξn be those corresponding to (rn, r
′
n, r

′∗n,
σ, σ ′, φ). By definition of WB(r, r

′, r ′∗, σ, σ ′, φ) it is easily seen for Case (1)–
Case (5) that WB(r, r

′, r ′∗, σ, σ ′, φ)= 0 for all (σ, σ ′, φ) ∈ S2 ×S2 × [0,2π ].
[Note that for Case (4) we have ξ = σ , so |〈ξ, σ 〉| = 1 which implies that
1{r ′∗>r|〈ξ,σ 〉|} =1{r ′∗>r} =0.]

For Case (1) we have r ′n → 0 and r ′∗n → 0; for Case (2), Xn → 0,
Yn → r ′∗ > 0 so that cos θn → 0 ; for Case (3), Xn → r ′ > 0, Yn → 0 so
that sin θn → 0; and for Case (4) we have Xn → r > 0, ξn → σ , |〈σ, ξn〉| →
1 so that Yn →

√
(r ′∗

2 − r2)+ = 0, and so sin θn → 0. Therefore applying
the estimate (3.7) and B(V,0)= 0 we obtain for Case (1)–Case (4) that
WB(rn, r

′
n, r

′∗n, σ, σ
′, φ)→ 0 as n→ ∞ for all (σ, σ ′, φ) ∈ S2 ×S2 × [0,2π ].

Let

�={(σ, σ ′, φ)∈S2 ×S2 × [0,2π ] | |〈σ,σ ′〉|<1 , φ �=π}.
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It is not hard to check that for any (σ, σ ′, φ) ∈�, Y = 0 if and only if
r ′∗ � r and r ′ =0, or r ′∗ = r=0. This property will be used in dealing with
Case (8). Now for Case (5) we consider the following dσdσ ′dφ – null set:

Z(r,r ′)=
{
(σ, σ ′, φ)∈S2 ×S2 × [0,2π ] | 〈σ,σ ′〉= r

r ′
}
.

For all (σ, σ ′, φ) ∈� \ Z(r,r ′), we have |〈σ, ξ〉|> 0 and |〈σ, ξn〉| → |〈σ, ξ〉|,
r ′∗n − rn|〈σ, ξn〉| → −r|〈σ, ξ〉| < 0. This implies that 1{r ′∗n>rn|〈σ,ξn〉|} → 0.
Therefore WB(rn, r

′
n, r

′∗n, σ, σ
′, φ) → 0 as n → ∞ for all (σ, σ ′, φ) ∈ � \

Z(r,r ′).
Now we deal with the rest of cases. For Case (6), we have ξ = σ ,

Xn→X= r > 0, ξn→σ = ξ , 〈σ, ξn〉→ 1 =〈σ, ξ〉, r ′∗n− rn|〈σ, ξn〉|→ r ′∗ − r >
0, Yn →

√
r ′∗

2 − r2 = Y > 0, and 1{r ′∗n>rn|〈σ,ξn〉|} → 1 = 1{r ′∗>r|〈σ,ξ〉|}. Since the
denominators X> 0, Y > 0 and Xr ′∗ + Yr ′ = rr ′∗ > 0, this implies that the
pointwise convergence (3.9) holds for all (σ, σ ′, φ)∈�. For Case (7), we
have Xn→X= r ′>0, Yn→Y = r ′∗>0, Xnr ′∗n+Ynr ′n→Xr ′∗ +Yr ′ =2r ′r ′∗>0,
r ′∗n− rn|〈σ, ξn〉|→ r ′∗>0 so that 1{r ′∗n>rn|〈σ,ξn〉|} →1=1{r ′∗>r|〈σ,ξ〉|}. Thus (3.9)
holds for all (σ, σ ′, φ)∈�. Finally for Case (8), we consider the following
set:

Z(r,r ′,r ′∗)={(σ, σ ′, φ)∈S2 ×S2 × [0,2π ] | r ′∗ = r|〈σ, ξ〉| }

Note that the equality r ′∗ = r|〈σ, ξ〉| is equivalent to

r2r ′2〈σ,σ ′〉2 −2rr ′(r2 − r ′∗2
)〈σ,σ ′〉+ r4 − r ′∗2

(r2 + r ′2)=0.

Since r, r ′>0, the set Z(r,r ′,r ′∗) is a dφdσdσ ′-null set. For all (σ, σ ′,φ)∈
� \Z(r,r ′,r ′∗), we have Xn→X>0, Yn→Y>0, Xnr ′∗n+Ynr ′n→Xr ′∗ +Yr ′> 0,
and r ′∗n− rn|〈σ, ξn〉|→ r ′∗ − r|〈σ, ξ〉| �=0 which implies that 1{r ′∗n>rn|〈σ,ξn〉|} →
1{r ′∗>r|〈σ,ξ〉|} as n→∞. Therefore (3.9) holds for all (σ, σ ′, φ)∈�\Z(r,r ′,r ′∗)
and the proof is completed.

Lemma 3. Let Bn be given in (2.1). Then for any 0<R <∞ and
any ϕ ∈C2

b (R+),

lim
n→∞ sup

(r,r ′,r ′∗)∈[0,R]3
|WB(r, r

′, r ′∗)−WBn(r, r
′, r ′∗)|=0, (3.10)

lim
n→∞ sup

(r,r∗)∈[0,R]2
|JB [ϕ](r, r∗)−JBn [ϕ](r, r∗)|=0, (3.11)

lim
n→∞ sup

(r,r ′,r ′∗)∈[0,R]3
|KB [ϕ](r, r ′, r ′∗)−KBn [ϕ](r, r ′, r ′∗)|=0. (3.12)
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Proof. Since Bn � Bn+1 � B and the factor (r ′2 − r2)(r ′∗
2 − r2) is

independent of (σ, σ ′, φ), it follows from the definition of WB that the
sequence {|WB −WBn |}∞n=1 is monotone: For all (r, r ′, r ′∗)∈R3+

|WB(r, r
′, r ′∗)−WBn+1(r, r

′, r ′∗)|=
2

(4π)3

∫∫
S2×S2

dσdσ ′

×
∫ 2π

0
|WB(r, r

′, r ′∗, σ, σ
′, φ)−WBn+1(r, r

′, r ′∗, σ, σ
′, φ)|dφ

� |WB(r, r
′, r ′∗)−WBn(r, r

′, r ′∗)|, n=1,2,3, . . . .

Also we have for all (r, r ′, r ′∗, σ, σ ′, φ)∈R3+ ×S2 ×S2 × [0,2π ]

|WB(r, r
′, r ′∗, σ, σ

′, φ)−WBn(r, r
′, r ′∗, σ, σ

′, φ)|→0 as n→∞.

Since for any fixed (r, r ′, r ′∗) the sequence {WBn(r, r
′, r ′∗, σ, σ ′, φ)}∞

n=1 is
bounded on S2 ×S2 × [0,2π ] (see the estimate (3.7)), it follows from
Lebesgue dominated convergence that

|WB(r, r
′, r ′∗)−WBn(r, r

′, r ′∗)|→0 (n→∞) ∀ (r, r ′, r ′∗)∈R3
+.

On the other hand, by Lemma 2, |WB(r, r
′, r ′∗)−WBn(r, r

′, r ′∗)| are continu-
ous on R3+. Therefore the uniform convergence (3.10) follows from Dini’s
monotone convergence theorem. Using the Dini’s monotone convergence
again we have (with B=B(|rσ − r∗σ∗|, cos θ))

sup
(r,r∗)∈[0,R]2

|JB [ϕ](r, r∗)−JBn [ϕ](r, r∗)|

� ‖ϕ‖L∞ sup
(r,r∗)∈[0,R]2

∫∫
S2×S2

dσdσ∗
∫ π/2

0
|B−Bn| sin θdθ

→0 (n→∞).

This proves (3.11). The convergence (3.12) is obvious because of the fol-
lowing estimate

|KB [ϕ](r, r ′, r ′∗)−KBn [ϕ](r, r ′, r ′∗)| � Cϕ |WB(r, r
′, r ′∗)−WBn(r, r

′, r ′∗)|

where Cϕ =3‖D2ϕ‖L∞ .
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By definitions of JB [ϕ] and KB [ϕ] and Lemma 2, it is easily seen that
the functions (r, r∗) �→ JB [ϕ](r, r∗) and (r, r ′, r ′∗) �→KB [ϕ](r, r ′, r ′∗) are con-
tinuous on R2+ and on R3+ respectively. Moreover because 0 � Bn � B we
have for all ϕ ∈C2

b (R+) and all n � 1,

|JBn [ϕ](r, r∗)|, |JB [ϕ](r, r∗)| � C‖ϕ‖L∞(1+ r+ r∗), (3.13)

|KBn [ϕ](r, r ′, r ′∗)|, |KB [ϕ](r, r ′, r ′∗)| � 3‖D2ϕ‖L∞|WB(r, r
′, r ′∗)|, (3.14)

|KBn [ϕ](r, r ′, r ′∗)|, |KB [ϕ](r, r ′, r ′∗)|�C‖D2ϕ‖L∞(r ′ + r ′∗)(1+ r ′ + r ′∗).
(3.15)

Here C=C0 supV � 0, τ∈[0,1]
B(V,τ)

1+V , C0 is an absolute constant.
Let B+(R+) be the class of all finite positive Borel measures on R+.

Here as usual the "finite" means that the total variation of a positive mea-
sure µ is finite, i.e., ‖µ‖ := ∫R+ dµ(r)<∞. For s � 0, let

B+
s (R+)={µ∈B+(R+) | ‖µ‖s :=

∫
R3
(1+ rs)dµ(r)<∞}.

Lemma 4. Given s � 0. Let µn,µ∈B+
s (R+) satisfy supn � 1 ‖µn‖s <

∞ and

lim
n→∞

∫
R+
ψ(r)dµn(r)=

∫
R+
ψ(r)dµ(r) ∀ψ ∈C∞

c (R+).

For any integer k � 1, let 	 ∈C(Rk+) satisfy

	(r1, r2, · · · , rk)∏k
j=1(1+ rsj )

→0 as r2
1 + r2

2 +· · ·+ r2
k →∞.

Then

lim
n→∞

∫
Rk+
	(r1, r2, · · · , rk)dµn(r1)dµn(r2) · · ·dµn(rk)

=
∫

Rk+
	(r1, r2, · · · , rk)dµ(r1)dµ(r2) · · ·dµ(rk).

In general, if {	n}∞n=1 ⊂C(Rk+) satisfies

sup
n � 1

|	n(r1, r2, · · · , rk)|∏k
j=1(1+ rsj )

→0 as r2
1 + r2

2 +· · ·+ r2
k →∞

and for any R>0,
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sup
(r1,r2,··· ,rk)∈[0,R]k

|	n(r1, r2, · · · , rk)−	(r1, r2, · · · , rk)|→0(n→∞),

then

lim
n→∞

∫
Rk+
	n(r1, r2, · · · , rk)dµn(r1)dµn(r2) · · ·dµn(rk)

=
∫

Rk+
	(r1, r2, · · · , rk)dµ(r1)dµ(r2) · · ·dµ(rk).

Proof. We need only to prove the general case. Let M=supn� 1 ‖µn‖s .
It is easily seen that ‖µ‖s � M. Let r = (r1, r2, · · · , rk),
dνn(r)=dµn(r1)dµn(r2) · · ·dµn(rk), dν(r)=dµ(r1)dµ(r2) · · ·dµ(rk).

Let 	n,	 be the functions given in the lemma. Then for any ε >0, there
exist R=Rε >0, nε � 1 such that

|	n(r)| , |	(r)|<ε
∏k

j=1
(1+ rsj ), ∀|r| � R, ∀n � 1,

|	n(r)−	(r)|<ε, ∀r ∈ [0,R+2]k, ∀n � nε.

On the other hand, by Weierstrass’ approximation theorem, there exists
a k-variables polynomial P such that |	(r)−P(r)|< ε for all r ∈ [0,R+
2]k. Choose a function χR ∈ C∞

c (R) satisfying 0 � χR(r) � 1 on R and
χR(r)=1 for r ∈ [0,R] and χR(r)=0 for r ∈ [R+2,∞). If we write P(r)=∑N
i=1
∏k
j=1Pi,j (rj ) with Pi,j (r) the one-variable polynomials, then

P(r)
∏k

j=1
χR(rj )=

N∑
i=1

∏k

j=1
ψi,j (rj )

where ψi,j (r)=Pi,j (r)χR(r). Consider the following decomposition∫
Rk+
	n(r)dνn(r)−

∫
Rk+
	(r)dν(r)

=
∫

Rk+
	n

[
1−

∏k

j=1
χR(rj )

]
dνn(r)

+
∫

Rk+
(	n−	)

∏k

j=1
χR(rj )dνn(r)+

∫
Rk+
(	−P)

∏k

j=1
χR(rj )dνn(r)

+
[∫

Rk+

∑N

i=1

∏k

j=1
ψi,j (rj )dνn(r)−

∫
Rk+

∑N

i=1

∏k

j=1
ψi,j (rj )dν(r)

]
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+
∫

Rk+
(P −	)

∏k

j=1
χR(rj )dν(r)+

∫
Rk+
	

[∏k

j=1
χR(rj )−1

]
dν(r)

:= In,1 + In,2 + In,3 + In,4 + I5 + I6.

Since 1 −∏k
j=1χR(rj )= 0 for all r ∈ [0,R]k and

∏k
j=1χR(rj )= 0 for all r /∈

[0,R+2]k, it follows that for all n � nε

|In,1| �
∫

Rk+\[0,R]k
|	n|dνn(r) � ε

∫
Rk+

∏k

j=1
(1+ rsj )dνn(r) � εMk,

|In,2| �
∫

[0,R+2]k
|	n−	|dνn(r) � εMk,

|In,3| �
∫

[0,R+2]k
|	−P |dνn(r) � εMk.

Similarly |I5| � εMk, |I6| � εMk. For In,4, since ψi,j ∈C∞
c (R+), it follows

from Fubini theorem and the assumption of the lemma that

In,4 =
∑N

i=1

∏k

j=1

∫
R+
ψi,j (r)dµn(r)

−
∑N

i=1

∏k

j=1

∫
R+
ψi,j (r)dµ(r)→0 as n→∞.

Therefore

lim sup
n→∞

∣∣∣∣∣
∫

Rk+
	n(r)dνn(r)−

∫
Rk+
	(r)dν(r)

∣∣∣∣∣ � 5Mkε ∀ε >0.

This proves the lemma by lettingε→0+.

Corollary of Lemma 4. Given s � 0. Let {µt }t � 0 ⊂B+
s (R+) satisfy

(1) supt∈[0,T ] ‖µt‖s <∞ ∀0<T <∞;

(2) for any ψ ∈C∞
c (R+), the function t �→ ∫

R+ ψ(r)dµt (r) is continu-
ous on [0,∞).

Then for any integer k � 1 and any 	 ∈C(Rk+ × [0,∞)) satisfying

sup
t � 0

|	(r1, r2, · · · , rk, t)|∏k
j=1(1+ rsj )

→0 as r2
1 + r2

2 +· · · r2
k →∞,



1626 Lu

the function

t �→
∫

Rk+
	(r1, r2, · · · , rk, t)dµt (r1)dµt (r2) · · ·dµt (rk)

is also continuous on [0,∞) .

Lemma 5. Given s >0,M >0. Let ψ ∈Cb(R+). Then for any ε >0,
there exists ϕε ∈Ckb(R+) (for all k � 1) such that∫

R+
|ϕε(r2)−ψ(r)|dµ<ε, ∀µ∈B+

s (R+) s.t. ‖µ‖s � M.

Proof. Given any ε >0. Choose 0<R<∞ such that ‖ψ‖L∞MR−s <
ε/4 and then choose 0<δ= δ(ε)<R such that

|ψ(r)−ψ(r ′)|<ε/(4M) ∀ r, r ′ ∈ [0,2R] s.t. |r− r ′| � 2δ. (3.16)

Let ψε(r) be defined by ψε(r)=ψ(0) for 0 � r � 2δ, and ψε(r)=ψ(r)
for all r � 2δ. Then ‖ψε −ψ‖L∞ � ε, and ‖ψε‖L∞ � ‖ψ‖L∞ . Let 0 � α∈
C∞
c (R) with supp α= [−1,1] and

∫ 1
−1 α(t)dt=1. Let αδ(t)=α(t/δ)/δ,

	ε(r)=
∫ ∞

−∞
ψε(|t |)αδ(r− t)dt=

∫ 1

−1
ψε(|r− δt |)α(t)dt. (3.17)

Then 	ε ∈Ckb(R+) (for all k � 1) and ‖	ε‖L∞ � ‖ψ‖L∞ . Also, for all r ∈
[0,R] and all t ∈ [−1,1] we have |r− δt |<2R, ||r− δt |− r| � δ, and so by
(3.16) and (3.17)

sup
r∈[0,R]

|	ε(r)−ψ(r)| � ‖ψε −ψ‖L∞ + ε/(4M) � ε/(2M).

Moreover we note that if 0 � r � δ, then |r − δt | � 2δ for all t ∈ [−1,1],
and so ψε(|r − δt |)=ψ(0). Therefore 	ε(r)=ψ(0) for all r ∈ [0, δ]. Thus
d
dr
	ε(r)= 0 for all r ∈ [0, δ]. If we define ϕε(r)=	ε(

√
r), then it is obvi-

ous that ϕε ∈Ckb(R+) (for all k � 1) and by the choice of R we have, for
any µ∈B+

s (R+) satisfying ‖µ‖s � M,∫
R+

|ϕε(r2)−ψ(r)|dµ(r)

=
∫

R+
|	ε(r)−ψ(r)|dµ(r)

�
∫

[0,R]
|	ε(r)−ψ(r)|dµ(r)+2‖ψ‖L∞

∫
[R,∞)

dµ(r)

� ε/2+2‖ψ‖L∞MR−s <ε.
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Lemma 6. Let F be a positive Borel measure on R+ with 0 <∫
R+(1+ rs)dF (r)<∞ for some s � 2. Then there exist isotropic functions

0<f n ∈L1
2(R

3)∩C(R3) such that∫
R3
f n(|v|)ψ(|v|)dv→

∫
R+
ψ(r)dF (r) (n→∞)

for all ψ ∈ C(R+) satisfying supr � 0 |ψ(r)|/(1 + rs) < ∞. Moreover, if∫
R+ r

2dF(r)>0, then for all n � 1

∫
R3
f n(|v|)dv=

∫
R+
dF(r),

∫
R3
f n(|v|)|v|2dv=

∫
R+
r2dF(r). (3.18)

Proof. By Riesz representation theorem, there exists a unique finite
positive Borel measure µ on R3 such that for all ψ ∈C0(R3)∫

R3
ψ(v)dµ(v)= 1

4π

∫
R+

(∫
S2
ψ(rω)dω

)
dF(r). (3.19)

It is easily proved using monotone convergence that∫
R3
(1+|v|s)dµ(v)=

∫
R+
(1+ rs)dF (r)<∞

and so Eq. (3.19) holds for all ψ ∈C(R3) satisfying supv∈R3 |ψ(v)|/(1 +
|v|s)<∞.

Let T = 1
3

∫
R+ r

2dF(r)/
∫

R3 dF(r) for
∫

R+ r
2dF(r) > 0; T = 1 for∫

R+ r
2dF(r)=0, and let

M(|v|)= 1
(2πT )3/2

exp(−|v|2/2T ).

Let f n be given by the Mehler transform (thanks to Carlen’s suggestion):

f n(v)= e3n
∫

R3
M
(
en|v−

√
1− e−2n v∗|

)
dµ(v∗).

By definition of the measure µ, the functions f n are strictly positive and
continuous on R3. Moreover, it is easily verified that f n are isotropic func-
tions. So we can write f n(v)= f n(|v|). By Fubini theorem and changing
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variable z= en(v−
√

1− e−2n v∗), we compute∫
R3
f n(|v|)ψ(|v|)dv=

∫
R+
In[ψ ](v∗)dµ(v∗) (3.20)

for all ψ ∈C(R+) satisfying supr∈R+ |ψ(r)|/(1+ rs)<∞, where

In[ψ ](v∗)=
∫

R3
ψ(|e−n z+

√
1− e−2n v∗|)M(|z|)dz. (3.21)

Since

|ψ(|e−n z+
√

1− e−2n v∗|)|
� C(1+|e−n z+

√
1− e−2n v∗|s) � C(1+|z|s)(1+|v∗|s),

it follows from dominated convergence that

In[ψ ](v∗)→ψ(|v∗|) (n→∞) ∀v∗ ∈R3.

Also we have, for some constant C, |In[ψ ](v∗)| � C(1+|v∗|s). Thus apply-
ing dominated convergence again we obtain∫

R3
f n(|v|)ψ(|v|)dv=

∫
R3
In[ψ ](v∗)dµ(v∗)

→
∫

R3
ψ(|v∗|)dµ(v∗)=

∫
R+
ψ(r)dF (r) (n→∞).

Finally, if
∫

R+ r
2dF(r) > 0, then applying (3.20) and (3.21) to ψ(|v|) =

1, |v|2 and recalling the choice of T and M(|v|) we obtain (3.18).

4. WEAK STABILITY AND EXISTENCE OF SOLUTIONS

Theorem 1. (Weak Stability). Let B,Bn be collision kernels satisfy-
ing the conditions (i)–(ii) and either Bn≡B (∀n � 1) or Bn be the cutoff
of B given by (2.1) (∀n � 1). Let F0,F

n
0 be positive Borel measures on R+

satisfying∫
R+
(1+ r2)dF0(r)<∞, sup

n � 1

∫
R+
(1+ r2)dFn0 (r)<∞,
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and

lim
n→∞

∫
R+
ψ(r)dFn0 (r)=

∫
R+
ψ(r)dF0(r) ∀ψ ∈Cb(R+).

Let Fnt be conservative isotropic distributional solutions of Eq. (BBE) with
the kernel Bn and Fnt |t=0 =Fn0 (∀n � 1). Then there exist a subsequence
{Fnjt }∞

j=1 of {Fnt }∞
n=1 and an isotropic distributional solution Ft of Eq.

(BBE) with the kernel B satisfying Ft |t=0 =F0 such that

lim
j→∞

∫
R+
ψ(r)dF

nj
t (r)=

∫
R+
ψ(r)dFt (r) ∀t � 0, ∀ψ ∈Cb(R+) (4.1)

(therefore Ft conserves the mass) and∫
R+
r2dFt (r) � lim inf

j→∞

∫
R3
r2dF

nj
0 (r) ∀t � 0. (4.2)

Furthermore if

lim
n→∞

∫
R+
r2dFn0 (r)=

∫
R+
r2dF0(r), (4.3)

then the solution Ft also conserves the energy:∫
R+
r2dFt (r)=

∫
R3
r2dF0(r) ∀t � 0.

Proof. By conservation of the mass and energy, we have supn � 1,t � 0
‖Fnt ‖2 =M<∞. Here and below M= supn � 1 ‖Fn0 ‖2. Let

�n[ψ ](t)=
∫

R+
ψ(r)dFnt (r), t ∈ [0,∞), ψ ∈Cc(R+). (4.4)

Then |�n[ψ ](t)| � M‖ψ‖L∞ for all n � 1, t � 0. Since Cc(R+) is separa-
ble under the distance dist(ψ1,ψ2)=‖ψ1 −ψ2‖L∞ , applying the usual diag-
onal process we obtain a subsequence of positive integers, still denote it
as {n}, such that �[ψ ](t̄) := limn→∞�n[ψ ](t̄) exists for all ψ ∈ Cc(R+)
and all t̄ ∈ Q+. Here Q+ is the set of nonnegative rational numbers.
Now we prove that this limit also exists for all real number t � 0. The



1630 Lu

main step for proving this is to prove the following equi-continuity: For
any ψ ∈Cc(R+),

sup
n � 1

|�n[ψ ](t1)−�n[ψ ](t2)|→0 as |t1 − t2|→0. (4.5)

Recall that Fnt are distributional solutions of Eq. (BBE). We have for any
ϕ ∈C2

b (R+)∫
R+
ϕ(r2)dFnt (r)

=
∫

R+
ϕ(r2)dFn0 (r)+

∫ t

0
ds

∫∫
R2+
JBn [ϕ](r, r∗) dFns (r) dF

n
s (r∗)

+ε
∫ t

0
ds

∫∫∫
R3+
KBn [ϕ](r, r ′, r ′∗) dF

n
s (r) dF

n
s (r

′) dFns (r
′
∗), t � 0.

By inequalities (3.13) and (3.15), this implies that ∀ t1, t2 � 0

sup
n � 1

∣∣∣∣∫
R+
ϕ(r2)dFnt1(r)−

∫
R+
ϕ(r2)dFnt2(r)

∣∣∣∣ � C‖ϕ‖2,∞|t1 − t2| (4.6)

where ‖ϕ‖2,∞ =‖ϕ‖L∞ +‖D2ϕ‖L∞ , C depends only on B and M. For any
ε >0, by Lemma 5 (with s=2), there exists ϕε ∈C2

b (R+) such that

sup
n � 1, t � 0

∣∣∣∣∫
R+
ϕε(r

2)dFnt (r)−
∫

R+
ψ(r)dFnt (r)

∣∣∣∣<ε.
This together with (4.6) gives

sup
n � 1

|�n[ψ ](t1)−�n[ψ ](t2)|<2ε+C‖ϕε‖2,∞|t1 − t2|

which implies (4.5). The property (4.5) implies that |�[ψ ](t̄1)−�[ψ ](t̄2)|→
0 as |t̄1 − t̄2| → 0 for t̄1, t̄2 ∈ Q+. So �[ψ ](t) := limt̄→t �[ψ ](t̄) exists for
all t ∈ [0,∞) and all ψ ∈ Cc(R+). Therefore limn→∞�n[ψ ](t) = �[ψ ](t)
holds for all t ∈ [0,∞) and all ψ ∈Cc(R+). Since for every fixed t , ψ �→
�[ψ ](t) is a bounded positive linear functional on Cc(R+), it follows
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from Riesz representation theorem that there exists a unique finite positive
Borel measure Ft on R+ such that �[ψ ](t)= ∫R+ ψ(r)dFt (r), i.e.,

lim
n→∞

∫
R+
ψ(r)dFnt (r)=

∫
R+
ψ(r)dFt (r) ∀ψ ∈Cc(R+), ∀ t ∈ [0,∞).

(4.7)

By the assumption of the theorem, this implies that Ft |t=0 =F0. Combin-
ing (4.7) with (4.4)–(4.5) one sees that the function t �→ ∫

R+ ψ(r)dFt (r) is
continuous on [0,∞) for all ψ ∈Cc(R+). Since Fnt are conservative solu-
tions, it follows that Ft conserves the mass and satisfies (4.1) and (4.2).

Now we are going to prove that Ft is a distributional solution to Eq.
(BBE) with the kernel B. Recall that for any ϕ ∈C2

b (R+), the functions
JB [ϕ](r, r∗), JBn [ϕ](r, r∗), KB [ϕ](r, r ′, r ′∗), and KBn [ϕ](r, r ′, r ′∗) are continu-
ous on R2+ and R3+ respectively. And by the inequalities (3.13), (3.14), and
Lemma 2 (3.6) we have for all ϕ ∈C2

b (R+),

lim
r2+r2∗→∞

|JB [ϕ](r, r∗)|+ supn � 1 |JBn [ϕ](r, r∗)|
(1+ r2)(1+ r2∗ )

=0, (4.8)

lim
r2+r ′2+r ′∗2→∞

|KB [ϕ](r, r ′, r ′∗)|+ supn � 1 |KBn [ϕ](r, r ′, r ′∗)|
(1+ r2)(1+ r ′2)(1+ r ′∗2)

=0. (4.9)

Therefore by (4.7), (4.8), (4.9), Lemma 3, and Lemma 4 (with s = 2) we
obtain that for any ϕ ∈C2

b (R+) and any t ∈ [0,∞),

lim
n→∞

∫
R+
ϕ(r2)dFnt (r)=

∫
R+
ϕ(r2)dFt (r),

lim
n→∞

∫∫
R2+
JBn [ϕ](r, r∗) dFnt (r) dF

n
t (r∗)

=
∫∫

R2+
JB [ϕ](r, r∗) dFt (r) dFt (r∗),

lim
n→∞

∫∫∫
R3+
KBn [ϕ](r, r ′, r ′∗) dF

n
t (r) dF

n
t (r

′) dFnt (r
′
∗)

=
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗) dFt (r) dFt (r

′) dFt (r ′∗).
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Also we have by (3.13),(3.15), and (4.2) that the collision integrals are
bounded: For all n � 1 and all t � 0,

∫∫
R2+

|JB [ϕ](r, r∗)|dFnt (r) dFnt (r∗) � C‖ϕ‖L∞M2,∫∫
R2+

|JB [ϕ](r, r∗)|dFt (r) dFt (r∗) � C‖ϕ‖L∞M2,∫∫∫
R3+

|KBn [ϕ](r, r ′, r ′∗)|dFnt (r) dFnt (r ′) dFnt (r ′∗) � C‖D2ϕ‖L∞M3,∫∫∫
R3+

|KB [ϕ](r, r ′, r ′∗)|dFt (r) dFt (r ′) dFt (r ′∗) � C‖D2ϕ‖L∞M3,

where C depends only on B. Thus by Lebesgue dominated convergence we
obtain for all t � 0

∫
R+
ϕ(r2)dFt (r)

=
∫

R+
ϕ(r2)dF0(r)+

∫ t

0
ds

∫∫
R2+
JB [ϕ](r, r∗) dFs(r) dFs(r∗)

+ε
∫ t

0
ds

∫∫∫
R3+
KB [ϕ](r, r ′, r ′∗) dFs(r) dFs(r

′) dFs(r ′∗).

Furthermore, (4.8), (4.9) and the Corollary of Lemma 4 imply that the
functions

t �→
∫∫

R2+
JB [ϕ](r, r∗) dFt (r) dFt (r∗),

t �→
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗) dFt (r) dFt (r

′) dFt (r ′∗)

are continuous on [0,∞). Therefore we have for any ϕ ∈C2
b (R+)

d

dt

∫
R+
ϕ(r2)dFt (r)=

∫∫
R2+
JB [ϕ](r, r∗) dFt (r) dFt (r∗)

+ε
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗) dFt (r) dFt (r

′) dFt (r ′∗) ∀ t � 0.
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Thus Ft is an isotropic distributional solution of Eq. (BBE). Finally, sup-
pose the condition (4.3) is satisfied. Then (4.2) and (4.3) imply

∫
R+
r2dFt (r) �

∫
R+
r2dF0(r) ∀ t � 0. (4.10)

On the other hand, because Ft is a solution, the energy t �→∫
R2+
r2dFt (r) is non-decreasing on [0,∞) (see Theorem 3 in the next sec-

tion). This together with (4.10) implies that Ft conserves the energy. The
proof of the theorem is completed.

Theorem 2. (Existence). Let B be a collision kernel satisfying the
conditions (i)–(ii). Let F0 be a positive Borel measure on R+ satisfying
0<

∫
R+(1+ r2)dF0(r)<∞. Then Eq. (BBE) has an isotropic distributional

solution Ft with Ft |t=0 =F0 and Ft conserves the mass and energy.

Proof. For any n � 1, let f n0 ∈ L1
2(R

3) be the nonnegative isotro-
pic function obtained in Lemma 6 (with s = 2) corresponding to the
measurer F0. Let Bn be the cutoff kernel given in Eq. (2.1). By The-
orem 3 in ref. 20, the Eq. (BBE) with the kernel Bn has a conserva-
tive isotropic solution f n(|v|, t) in the class C1([0,∞);L1

2(R
3)) satisfy-

ing f n(|v|, t)|t=0 = f n0 (|v|). As in Section 2, let dFn0 (r) = 4πr2f n0 (r)dr,
dFnt (r)=4πr2f n(r, t)dr. Then Fnt are conservative distributional solutions
of Eq. (BBE) with the kernels Bn satisfying Fnt |t=0 =Fn0 . Also by Lemma
6 we have limn→∞

∫
R+ r

2dFn0 (r)=
∫

R+ r
2dF0(r). Thus the theorem follows

from Theorem 1.

Remark 2. For any distributional solution Ft of Eq. (BBE), Lemma
5 (with s= 2) implies that the function t �→ ∫

R+ ψ(r)dFt (r) is continuous
on [0,∞) for all ψ ∈ Cb(R+). From this property and the Corollary of
Lemma 4 (with s= 2) one sees that the proof given in Section 2 for the
general weak form (2.13) of Eq. (BBE) is rigorous.

5. ENERGY INEQUALITY AND MOMENT PRODUCTION

This section deals with the estimates of moments
∫

R+ r
sdFt (r) (s � 2).

We first prove that the second order moment (i.e., the energy) is non-
decreasing for all solutions.

Theorem 3. Let B a collision kernel satisfying the conditions (i)–
(ii), and let F0 be a positive Borel measure on R+ with

∫
R+(1 +



1634 Lu

r2)dF0(r) <∞. Then for any isotropic distributional solution Ft of Eq.
(BBE) with initial datum Ft |t=0 =F0, we have∫

R+
r2dFs(r) �

∫
R+
r2dFt (r) ∀0 � s < t <∞. (5.1)

Proof. The proof is similar to that given in ref. 19 using suitable trun-
cation of r2, but this time the truncation should be in C2

b (R+) because
of our Definition of distributional solutions. Let δ > 0, ϕδ(r)= r/(1 + δr).
Then ϕδ ∈C2

b (R+) and we compute

�ϕδ =ϕδ(|v|2)+ϕδ(|v∗|2)−ϕδ(|v′|2)−ϕδ(|v′
∗|2)=�(+)δ −�(−)δ

where �(±)δ � 0,

�
(+)
δ = δ[2+ δ(|v|2 +|v∗|2)]|v|2|v∗|2

(1+ δ|v|2)(1+ δ|v∗|2)(1+ δ|v′|2)(1+ δ|v′∗|2)

and �(−)δ has the same form as �(+)δ by replacing |v|2|v∗|2 with |v′|2|v′∗|2.
By symmetry of the collision integral, we have∫∫

R2+
JB [ϕδ](r, r∗)dFt (r)dFt (r∗)= 1

2

∫∫
R2+
ĴB [ϕδ](r, r∗)dFt (r)dFt (r∗)

where

ĴB [ϕδ](r, r∗)= 1
(4π)2

∫∫∫
S2×S2×S2

B(rσ − r∗σ∗,ω)[−�ϕδ]dωdσdσ∗.

Let

Iδ(r, r∗)= 1
(4π)2

∫∫∫
S2×S2×S2

B(rσ − r∗σ∗,ω)�(+)δ dωdσdσ∗.

Then ĴB [ϕδ](r, r∗) � − Iδ(r, r∗). A a simple estimate using |v′|2 + |v′∗|2 =
|v|2 +|v∗|2 gives �(+)δ � |v||v∗|= rr∗. This together with B(rσ − r∗σ∗,ω) �
C(1+ r+ r∗) implies

0 � Iδ(r, r∗) � C(1+ r2)(1+ r2
∗ ). (5.2)
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Also, since ‖D2ϕδ‖L∞ � 2δ, it follows from (2.7), (2.8) and (3.5) that

|KB [ϕδ](r, r ′, r ′∗)| � Cδ(1+ r ′2)(1+ r ′2
∗ ).

Here the constant C<∞ depends only on B. Thus for any 0 � s <t <∞
we have ∫

R+
ϕδ(r

2)dFt (r) �
∫

R+
ϕδ(r

2)dFs(r)

−
∫ t

s

dτ

∫∫
R2+
Iδ(r, r∗)dFτ (r)dFτ (r∗)−Cεδ ( sup

0 � τ � t

‖Fτ‖2)
3t. (5.3)

It is easily seen that Iδ(r, r∗)→ 0 (δ→ 0+). This together with (5.2) and
dominated convergence implies that∫ t

s

dτ

∫∫
R2+
Iδ(r, r∗)dFτ (r)dFτ (r∗)→0 (δ→0+).

Also by 0 � ϕδ(r
2) � r2 and ϕδ(r

2)→ r2(δ→0+) we have∫
R+
ϕδ(r

2)dFτ (r)→
∫

R+
r2dFτ (r) (δ→0+) ∀τ ∈ [0, t ].

Therefore the inequality (5.3) leads to (5.1) by letting δ→0+.

Now we are going to establish the moment production estimates of
distributional solutions of Eq. (BBE) for the original hard sphere model
and for hard potential models with angular cutoff as mentioned in the
Introduction.

Theorem 4. Let B(|v − v∗|, cos θ) = b(cos θ)|v − v∗|γ , where 0 <
γ � 1 is constant, 0 � b∈C([0,1]) and satisfies b(0)=0,

∫ 1
0 b(τ)dτ >0. Let

F0 be a positive Borel measure on R+ with 0<M0 =∫R+ dF0(r)<∞,M2 =∫
R3 r

2dF0(r) <∞. Then Eq. (BBE) with the kernel B has a conservative
distributional solution Ft which satisfies Ft |t=0 =F0 and for any s >2

∫
R+
rsdFt (r) � Cs

(
1+ 1

t

)(s−2)/γ

∀t >0 (5.4)
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where Cs =CB,ε,s(M0,M2)<∞ depends only on M0,M2,B, ε and s, and
the function CB,ε,s(x1, x2) is continuous on (x1, x2)∈ (0,∞)× [0,∞).

Proof. The proof is an improvement of that given in ref. 20 where
the moment estimate similar to (5.4) was established for approximate solu-
tions f n(|v|, t) for the kernel Bn given in Eq. (2.1), but the constants in
the upper bounds of moment estimates tend to infinity as n→∞. This is
because that the property of KBn [ϕ] was not considered to control the con-
stants.

Now suppose for any n � 1 the initial datum f n0 (|v|) is given as in
the proof of Theorem 2. By ref. 20 the conservative solution f n(|v|, t) with
initial datum f n0 (|v|) is unique and belongs to the class C1((0,∞);L1

s (R
3))

for all s >2. Let Fn0 (r),F
n
t be denoted as in the proof of Theorem 2 and

let Ft be a conservative distributional solution obtained in the same proof,
i.e., Ft is a weak limit of a subsequence of {Fnt }∞

n=1 and satisfies Ft |t=0 =
F0. We shall prove that this solution Ft satisfies the estimate (5.4). For any
F ∈B+

s (R+) let

Ms(F )=
∫

R+
rsdF (r).

It suffice to prove that the approximate solutions Fnt satisfy that for
any s > 2, there is a positive continuous function (x1, x2) �→CB,ε,s(x1, x2)

on (0,∞)× [0,∞) which is determined only by B, ε, and s, such that

Ms(F
n
t ) � Cs,n (1+1/t)(s−2)/γ ∀t >0 (5.5)

where Cs,n=CB,ε,s(M0(F
n
0 ),M2(F

n
0 )). In fact if (5.5) holds for all Fnt , then

by taking weak limit together with the continuity

CB,ε,s(M0(F
n
0 ),M2(F

n
0 ))→CB,ε,s(M0(F0),M2(F0)) (n→∞)

one sees that Ft satisfies (5.4). We note also that if the estimate (5.5) holds
for all s � 4, then it holds for all s >2 (thanks to Wennberg’s suggestion).
In fact by Hölder inequality and (5.5) with s=4 we have for 2<s<4

Ms(F
n
t ) � [M2(F

n
t )]

(4−s)/2[M4(F
n
t )]

(s−2)/2

� [M2(F
n
0 )]

(4−s)/2[C4,n](s−2)/2 (1+1/t)(s−2)/γ ∀t >0.

Therefore by defining CB,ε,s(x1, x2)= x
(4−s)/2
2 [CB,ε,4(x1, x2)](s−2)/2 for 2<

s < 4, the estimate (5.5) holds for all 2<s < 4 and therefore for all s > 2.
Therefore to prove (5.4) we need only to prove (5.5) for s � 4.
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As in ref. 20, we use the following version of Povzner-Elmroth
inequality (see e.g., ref. 19 and recall that s � 4):

|v′|s +|v′
∗|s −|v|s −|v∗|s � 2s

(|v|s−γ |v∗|γ +|v|γ |v∗|s−γ
)−2−s [κ(θ)]s |v|s

where κ(θ)= min{cos θ,1 − cos θ}, θ = arccos(|v− v∗|−1|〈v−v∗,ω〉|). Write
Bn=Bn(v−v∗,ω). By conservation of mass, we have for all n � 1 and all
t >0

d

dt
‖Fnt ‖s

= d

dt
Ms(F

n
t )

� 2s−1
∫∫∫

R3×R3×S2
Bn f

nf n∗
(|v|s−γ |v∗|γ +|v|γ |v∗|s−γ

)
dωdv∗dv

−2−s−1
∫∫∫

R3×R3×S2
Bn f

nf n∗ [κ(θ)]s |v|sdωdv∗dv

+ε
∫∫∫

R3+
KBn [ϕ](r, r ′, r ′∗)dF

n
t (r)dF

n
t (r

′)dFnt (r
′
∗)

:=2s−1I (1)n −2−s−1I (2)n + εI (3)n . (5.6)

Here ϕ(r)= rs/2. Let b∞ =maxτ∈[0,1] b(τ),

As =4π
∫ π/2

0
[κ(θ)]s min{cos2 θ sin θ, b(cos θ)} sin θ dθ,

and let C
(1)
s ,C

(2)
s , ... denote finite and strictly positive constants that

depend only on b∞, γ,As and s. Then following the proof in ref. 20 we
have

I (1)n � C(1)s ‖Fn0 ‖2‖Fnt ‖s ,
I (2)n � 1

2
As‖Fn0 ‖0Ms+γ (F nt )−

1
2
As‖Fn0 ‖0‖Fnt ‖s .

Further, using the relation Ms+γ (F nt )=‖Fnt ‖s+γ −‖Fn0 ‖0 and the inequali-
ties 1+rs � (1+r2)s/2, (1+r2)(s+γ )/2 � 2(s+γ−2)/2(1+rs+γ ), and applying
Hölder inequality, we have

Ms+γ (F nt ) � 2−(s+γ−2)/2 (‖Fn0 ‖2
)−γ /(s−2) (‖Fnt ‖s

)1+γ /(s−2)−‖Fn0 ‖0.
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Since ‖Fn0 ‖0 =‖Fnt ‖0 � ‖Fnt ‖s , this gives

2s−1I (1)n −2−s−1I (2)n � C(3)s ‖Fn0 ‖2‖Fnt ‖s
−C(4)s ‖Fn0 ‖0

(‖Fn0 ‖2
)−γ /(s−2) (‖Fnt ‖s

)1+γ /(s−2)
.

(5.7)

For the third term, I (3)n , we compute using the estimate (2.7) for ϕ(r)=
rs/2 that |L[D2ϕ](r, r ′, r ′∗)| � 3

4 s(s − 2)(r ′ + r ′∗)s−4 (because s � 4) and so
by Eqs. (2.8) and (3.5) we obtain

|KBn [ϕ](r, r ′, r ′∗)| � 60s2b∞(1+ r ′ + r ′∗)s−2

which gives

I (3)n � C(5)s
(‖Fn0 ‖0

)2 ‖Fnt ‖s .

Combining this with (5.6) and (5.7) we see that ‖Fnt ‖s satisfies the follow-
ing differential inequality

d

dt
‖Fnt ‖s � C(6)s (1+ ε‖Fn0 ‖0)‖Fn0 ‖2 ‖Fnt ‖s

−C(4)s ‖Fn0 ‖0
(‖Fn0 ‖2

)−γ /(s−2) (‖Fnt ‖s
)1+γ /(s−2) ∀t >0

which implies that (see Wennberg(31), Bobylev(2), or Lu(19))

Ms(F
n
t )<‖Fnt ‖s � C(s−2)/γ (1− e−at )−(s−2)/γ ∀t >0

where

a = γ

s−2
C(6)s (1+ ε‖Fn0 ‖0)‖Fn0 ‖2 ,

C = C
(6)
s (1+ ε‖Fn0 ‖0)(‖Fn0 ‖2)

1+γ /(s−2)

C
(4)
s ‖Fn0 ‖0

.

Since

(1− e−at )−(s−2)/γ � (1+1/a)(s−2)/γ (1+1/t)(s−2)/γ

and ‖Fn0 ‖0 =M0(F
n
0 ),‖Fn0 ‖2 =M0(F

n
0 )+M2(F

n
0 ), this gives the estimate

(5.5) for s � 4.



Boltzmann Equation for Bose-Einstein Particles 1639

6. EQUILIBRIUM STATES AND BEC

In this section we will give a rigorous derivation of the Bose-Ein-
stein condensation for equilibrium states using the weak form (2.12) of
Eq. (BBE).

Let F be a finite positive Borel measure on R+ with finite moments
up to order 2 and

∫
R+ dF(r)>0. Let Ft be an isotropic distributional solu-

tion to Eq. (BBE) with initial datum Ft |t=0 =F and suppose that Ft con-
serves the mass and energy. According to Chapman and Cowling(9), Chap.
2 and Truesdell and Muncaster(27), pp. 43–44, the kinetic temperature of
the corresponding particle system is defined by

T = m

2
· E
N

· 2
3kB

(6.1)

where

N =
∫

R+
dF(r) , E=

∫
R+
r2dF(r), (6.2)

N is the total number of particles per unit space volume, 1
2mE is the total

kinetic energy per unit space volume, m is the mass of a particle and kB is
the Boltzmann constant. Note that here the “kinetic temperature” is used
to distinguish the usual “temperature” because it is different from the clas-
sical cases that in the quantum cases there are no linear relation between
the kinetic temperature and the temperature (see also (6.13) for equilib-
rium states).2

A distributional solution Ft to the Eq. (BBE) in the weak form (2.12)
is called an equilibrium solution (or an equilibrium state) if Ft does not
depend on t . This is equivalent to that

Ft =F ∀ t � 0 and 〈QB(F),ϕ〉=0 ∀ϕ ∈C2
b (R+).

The Bose-Einstein distribution with zero mean-velocity is given by (see
Chapman and Cowling [9, Chap. 17] and recall that 1/ε= m3g

h3 )

Bα,β(|v|)= m3g
h3

· 1

eα+βm|v|2/2 −1
, β= 1

kB T
(6.3)

2According to this distinction, the temperature used in refs. 20–22, should be understood as
the kinetic temperature.
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where α � 0 is a constant and T > 0 is the temperature. Let δ0(v) be the
standard Dirac δ-function on R3 concentrating at v = 0. The δ-function
δ0(v) determines the Dirac measure µ0 on R+ by∫

R+
ψ(r)dµ0(r)=

∫
R3
ψ(|v|)δ0(v)dv=ψ(0), ψ ∈C(R+). (6.4)

Now we consider the following type of distributions consisting of Bose-
Einstein distributions and Dirac measures:

dF(r)=4πr2Bα,β(r)dr+N0 dµ0(r) (6.5)

where N0 � 0 is a constant.
It should be noted that if F in (6.5) is an equilibrium solution to

Eq. (BBE), then the T given through β=1/kBT is the temperature of the
corresponding particle system, but if F is not an equilibrium solution, T
should be only regarded as a parameter for defining F .

In contract to traditional result on BEC, we will use the critical tem-
perature Tc,

Tc= h2

2πmkB

[
N

ζ(3/2)g

]2/3

(6.6)

which is derived from the model of ideal Bose gases (see Landau and Lif-
shitz(17), pp. 180–181; p. 36, or Pathria(23), p. 180 for g = 1 (spinless)),
where ζ(s)=∑∞

n=1 n
−s (s >1) is the Riemann-Zeta function.

With the above notations we can state our main result of this section
as follows:

Theorem 5. Let F be the positive Borel measure (on R+) given by
(6.5) with T >0, α � 0 and N0 � 0.

Then

(I) F is an equilibrium solution of Eq. (BBE) in the weak form
(2.12) if and only if α=0 or N0 =0.

(II) Let T , N be given in (6.1)–(6.2) for the present F and let Tc be
given in (6.6). Let

T c := ζ(5/2)
ζ(3/2)

Tc≈0.5134Tc.
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Then

N0

N
� 1−

(
T

T c

)3/5

� 1−
(
T

Tc

)3/2

. (6.7)

(III) (Exact ratio of BEC)

N0

N
=1−

(
T

T c

)3/5

⇐⇒ N0

N
=1−

(
T

Tc

)3/2

(6.8)

⇐⇒F is an equilibrium solution with α=0.

For each of the cases in (III), it necessarily holds the low temperature con-
dition T � Tc (or equivalently T � T c).

Remark 3. (1) Escobedo, Mischler and Valle in ref. 13 considered
the conditional maximum entropy (here the entropy is the Boltzmann H -
functional (times −1) corresponding to Eq. (BBE)) and proved that the
entropy takes its conditional maximum value at a positive measure F if
and only if F takes the form (6.5) with α= 0 or N0 = 0. Thus the above
Theorem 5 shows that every entropy maximizer is an equilibrium solution
to Eq. (BBE) in the weak form (2.12). It is physically believed that every
equilibrium solution to Eq. (BBE) is also an entropy maximizer and there-
fore it takes the form (6.5) with α=0 or N0 =0, but the proof will be very
difficult because the equation is now taken in the weak form (in order to
include the hard sphere model) and a solution may have a singular part
which is not merely a single Dirac measure (see ref. 13 for discussions).

(2) At low temperatures (e.g. T <Tc or T <T c), the condition α=
0 is equivalent to that the chemical potential is zero. This is consistent
with the traditional result for ideal Bose gases (see for instance Huang
(16), pp. 262–265, Landau and Lifshitz (17), pp. 180–181]). The exact ratio
in (6.8) for Bose-Einstein condensation is essentially the same to those
derived in text books for equilibrium states (see e.g. refs. 16,17,23 where
a ratio for BEC for an ideal Bose gas is given by (with the same meaning
of N and N0)

N0

N
≈1−

(
T

Tc

)3/2

, T <Tc.

Here, as well known, the approximation “≈” is due to the discreteness
of the pure quantum model. In view of a discussion by Cercignani(8) for
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continuous and discrete models, there may be some differences about tem-
perature, entropy, etc. between the BBE model (which is in fact a semi-
classical one) and the pure quantum model (for idea Bose gases), but here
we will not make further comparisons.

Proof of Theorem 5. We first prove Part (II) and Part (III) (using
Part (I)). The proof of Part (I) will be given later. Let F be given by (6.5)
and let

Ne=
∫

R+
4πr2Bα,β(r)dr. (6.9)

Following the calculation in ref. 20, Section 5 and noting that the
Dirac measure N0µ0 has no contribution to the energy E, i.e.,
E= ∫R+ 4πr4Bα,β(r)dr, we have

E

(Ne)5/3
= ε2/3 · 3

2π
·R(e−α) (6.10)

where

R(t)= P5/2(t)

[P3/2(t)]5/3
, Ps(t)=

∞∑
n=1

n−s tn , t ∈ (0,1] , s >1

and R(t) is strictly decreasing on t ∈ (0,1]. Note that Ps(1)= ζ(s). Since

R(1)= P5/2(1)

[P3/2(1)]5/3
= ζ(5/2)

[ζ(3/2)]5/3
,

it follows from definitions of T , T c and ε and using (6.10) that

T

T c
=
(
Ne

N

)5/3 R(e−α)
R(1)

i.e.
Ne

N
=
(
T

T c

)3/5(
R(1)

R(e−α)

)3/5

. (6.11)

On the other hand, from (6.9) we compute

Ne=g
(

2πmkBT
h2

)3/2

P3/2(e
−α)
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so that

Ne

N
=
(
T

Tc

)3/2 P3/2(e
−α)

P3/2(1)
. (6.12)

Comparing (6.11) with (6.12) we obtain by a simple calculation that

(
T

Tc

)3/2

=
(
T

T c

)3/5(
P5/2(1)

P5/2(e
−α)

)3/5

. (6.13)

Since R(e−α) � R(1) and P5/2(e
−α) � P5/3(1) for α � 0, it follows from

(6.11) and (6.13) that

Ne

N
�
(
T

T c

)3/5

�
(
T

Tc

)3/2

which implies (6.7) because Ne =N −N0. This proves Part (II). To prove
Part (III) we note that the equivalency in (6.8) can be written

Ne

N
=
(
T

T c

)3/5

⇐⇒ Ne

N
=
(
T

Tc

)3/2

. (6.14)

Since R(t) and P3/2(t) are both strictly monotone on t ∈ (0,1], compar-
ing (6.11) and (6.12) with the two equalities in (6.14) and noting that T >
0, T >0, one sees that each of the two equalities in (6.14) is equivalent to
α=0. While, by Part (I), the condition α=0 implies that F is an equilib-
rium solution to Eq. (BBE) in the weak form (2.12). Conversely, if F is
an equilibrium solution with α= 0, then, as shown above, the two equal-
ities in (6.14) hold simultaneously. This proves Part(III). The necessity of
the low temperature condition T � Tc (or T � T c) for Part (III) is obvi-
ous because N0 � 0.

Now we are going to prove Part (I). By replacing F with εF and
B(v − v∗,ω) with 1

ε2B(v − v∗,ω) we may assume that ε = 1. We first
prove that the Bose-Einstein distribution in (6.3) and the Dirac measure
N0µ0 in (6.4) are both equilibria of Eq. (BBE) in the weak form (2.12).
Since JB [ϕ](r, r∗), KB [ϕ](r, r ′, r ′∗) are continuous on (r, r∗) ∈ R2+ and on
(r, r ′, r ′∗)∈R3+ respectively, and satisfies JB [ϕ](0,0)=0 and

KB [ϕ](0,0, r ′∗)=KB [ϕ](r, r ′,0)=0 ∀ r, r ′, r ′∗ � 0 (6.15)
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it follows from definition of 〈QB(F),ϕ〉 that the Dirac measure µ=N0µ0
is an equilibrium, i.e., 〈QB(µ),ϕ〉=0 for all ϕ∈C2

b (R+). For the Bose-Ein-
stein distribution Bα,β(|v|) with ε=1, it is well known that it satisfies the
following equation

f ′f ′
∗(1+f +f∗)=ff∗(1+f ′ +f ′

∗). (6.16)

Let dG(r)=4πr2Bα,β(r)dr and let Bn(v−v∗,ω) be the cutoff kernels (2.1).
Since the function f (|v|) :=Bα,β(|v|) belongs to L1

2(R
3), it follows from

our derivation in Section 2 for the weak form of Eq. (BBE) and (6.16)
that for all ϕ ∈C2

b (R+)

〈QBn(G),ϕ〉=
∫∫

R3×R3×S2
Bn(v−v∗,ω)ϕ(|v|2)

× [f ′f ′
∗(1+f +f∗)−ff∗(1+f ′ +f ′

∗)
]
dωdvdv∗ =0.

Thus by Lemma 3, Lemma 4 (with µ= µn =G,k = 2,3 and s = 2) we
obtain

〈QB(G),ϕ〉= lim
n→∞〈QBn(G),ϕ〉=0 ∀ϕ ∈C2

b (R+).

Next we prove that the measure dF(r) = dG(r) + dµ(r) with dG(r) =
4πr2f (r)dr, f (r)=Bα,β(r) (for ε= 1) and µ=N0µ0 ( for N0 > 0) is an
equilibrium solution to Eq. (BBE) in the weak form (2.12) if and only if
α=0. First of all we have the following decomposition

〈QB(F),ϕ〉=〈QB(G),ϕ〉+〈QB(µ),ϕ〉+〈RB(F), ϕ〉+〈SB(F ), ϕ〉

where as we have shown that 〈QB(G),ϕ〉=〈QB(µ),ϕ〉=0 and

〈RB(F), ϕ〉
=
∫∫

R2+
JB [ϕ](r, r∗)dG(r)dµ(r∗)+

∫∫
R2+
JB [ϕ](r, r∗)dG(r∗)dµ(r),

〈SB(F ), ϕ〉=
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗)dG(r)dG(r

′)dµ(r ′∗)

+
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗)dG(r)dG(r

′
∗)dµ(r

′)

+
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗)dG(r

′)dG(r ′∗)dµ(r)

+
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗)dG(r)dµ(r

′)dµ(r ′∗)
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+
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗)dG(r

′)dµ(r)dµ(r ′∗)

+
∫∫∫

R3+
KB [ϕ](r, r ′, r ′∗)dG(r

′
∗)dµ(r)dµ(r

′).

Since the measure µ=N0µ0 concentrates at r = 0, it follows from (6.15)
and dG(r)=4πr2f (r)dr that

〈RB(F), ϕ〉
=N04π

∫
R+
JB [ϕ](r,0)r2f (r)dr+N04π

∫
R+
JB [ϕ](0, r∗)r2

∗f (r∗)dr∗,

〈SB(F ), ϕ〉=N0(4π)
2
∫∫

R2+
KB [ϕ](r,0, r ′∗)r

2f (r)r
′2
∗ f (r

′
∗)drdr

′
∗

+N0(4π)
2
∫∫

R2+
KB [ϕ](0, r ′, r ′∗)r

′2f (r ′)r
′2
∗ f (r

′
∗)dr

′dr ′∗.

Making change of variables: let r = ρ cos θ, r ′∗ = ρ for KB [ϕ](r,0, r ′∗) (this
is because KB [ϕ](r,0, r ′∗)=KB [ϕ](r,0, r ′∗)1{r ′∗>r}), and let r ′ = ρ cos θ, r ′∗ =
ρ sin θ for KB [ϕ](0, r ′, r ′∗). Then

1
N0(4π)2

〈QB(F),ϕ〉= 1
4π

∫ ∞

0
[JB [ϕ](ρ,0)+JB [ϕ](ρ,0)]ρ2f (ρ)dρ

+
∫ ∞

0
ρ5
∫ π/2

0
KB [ϕ](ρ cos θ,0, ρ) cos2 θ sin θf (ρ cos θ)f (ρ)dθdρ

+
∫ ∞

0
ρ5
∫ π/2

0
KB [ϕ](0, ρ cos θ, ρ sin θ) cos2 θ sin2 θ

×f (ρ cos θ)f (ρ sin θ)dθdρ.

Calculation using (2.11) gives

JB [ϕ](ρ,0)+JB [ϕ](0, ρ)=4π
∫ π/2

0
B(ρ, cos θ) sin θ�ϕ(ρ cos θ,0, ρ)dθ

where we have used the definition of �ϕ(r, r ′, r ′∗), which gives

�ϕ(ρ cos θ,0, ρ)=ϕ(ρ2 cos2 θ)+ϕ(ρ2 sin2 θ)−ϕ(0)−ϕ(ρ2).

So

1
4π

∫ ∞

0
[JB [ϕ](ρ,0)+JB [ϕ](0, ρ)]ρ2f (ρ)dρ
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=
∫ ∞

0
ρ2f (ρ)

∫ π/2

0
B(ρ, cos θ) sin θ�ϕ(ρ cos θ,0, ρ)dθdρ.

Also by definition of KB [ϕ](r, r ′, r ′∗) (or using (2.10)) and observing that
�ϕ(0, ρ cos θ, ρ sin θ)=−�ϕ(ρ cos θ,0, ρ), we compute

KB [ϕ](ρ cos θ,0, ρ) cos2 θ sin θ

=ρ−3 [B(ρ, cos θ) sin θ +B(ρ, sin θ) cos θ ]�ϕ(ρ cos θ,0, ρ),

KB [ϕ](0, ρ cos θ, ρ sin θ) cos2 θ sin2 θ

=−1
2
ρ−3 [B(ρ, cos θ) sin θ +B(ρ, sin θ) cos θ ]�ϕ(ρ cos θ,0, ρ).

By symmetry �ϕ(ρ sin θ,0, ρ)=�ϕ(ρ cos θ,0, ρ), this gives∫ ∞

0
ρ5
∫ π/2

0
KB [ϕ](ρ cos θ,0, ρ) cos2 θ sin θf (ρ cos θ)f (ρ)dθdρ

=
∫ ∞

0
ρ2
∫ π/2

0
B(ρ, cos θ) sin θ�ϕ(ρ cos θ,0, ρ)

×f (ρ) [f (ρ cos θ)+f (ρ sin θ)]dθdρ,

∫ ∞

0
ρ5
∫ π/2

0
KB [ϕ](0, ρ cos θ, ρ sin θ) cos2 θ sin2 θf (ρ cos θ)f (ρ sin θ)dθ

=−
∫ ∞

0
ρ2
∫ π/2

0
B(ρ, cos θ) sin θ�ϕ(ρ cos θ,0, ρ)f (ρ cos θ)f (ρ sin θ)dθdρ.

Summarizing above gives

1
N0(4π)2

〈QB(F),ϕ〉=
∫ ∞

0
ρ2
∫ π/2

0
B(ρ, cos θ) sin θ�ϕ(ρ cos θ,0, ρ)

×
{
f (ρ) [1+f (ρ cos θ)+f (ρ sin θ)]−f (ρ cos θ)f (ρ sin θ)

}
dθdρ.

(6.17)

It should be noted that in the above derivation there are no integrabil-
ity problems even for the “worst” case α = 0 because |�ϕ(ρ cos θ,0, ρ)|
� 3‖D2ϕ‖L∞ρ4 cos2 θ sin2 θ (see Lemma 1).

The rest of proof is based on the following observation for the Bose-
Einstein distribution f (r)=Bα,β(r)= (eα+βmr2/2 −1)−1 (with ε=1): If α=
0, then
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f (r)f (r∗)=f (
√
r2 + r2∗ ) [1+f (r)+f (r∗)] .

By (6.17), this immediately implies that if α=0 then 〈QB(F),ϕ〉=0 for all
ϕ ∈C2

b (R+), i.e., F is an equilibrium solution to Eq. (BBE). For general
case (α � 0), we have

f (r)f (r∗)=f (
√
r2 + r2∗ ) [1+f (r)+f (r∗)]−R(r, r∗) (6.18)

where

R(r, r∗)= (eα −1)f (r)f (r∗)
1− e−α−βm(r2+r2∗ )/2

. (6.19)

Now from (6.17) and (6.18) we obtain

1
N0(4π)2

〈QB(F),ϕ〉

=
∫ ∞

0
ρ2
∫ π/2

0
B(ρ, cos θ) sin θ�ϕ(ρ cos θ,0, ρ)R(ρ cos θ, ρ sin θ)dθdρ.

(6.20)

Suppose that α > 0. Then (6.19) implies R(r, r∗) > 0 for all r, r ∗ � 0. If
we choose the test function as ϕ(r)=−e−r , then �ϕ(ρ cos θ,0, ρ)> 0 for
all (ρ, θ)∈ (0,∞)× (0, π/2). Since

∫ 1
0 B(V, τ)dτ >0 for all V >0, it follows

from (6.20) that 〈QB(F),ϕ〉>0 which means that F is not an equilibrium
solution to Eq. (BBE) in the weak form (2.12). This proves Part(I).
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